Browsing by Author "Boisson, F"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Item4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging(Elsevier, 2015-09-01) Reilhac, A; Charil, A; Wimberley, CA; Angelis, GI; Hamze, H; Callaghan, PD; Garcia, MP; Boisson, F; Ryder, W; Meikle, SR; Grégoire, MCQuantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [11C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. © 2015 Elsevier Inc.
- ItemAssessment of a fast generated analytical matrix for rotating slat collimation iterative reconstruction: a possible method to optimize the collimation profile(IOP Science, 2015-02-26) Boisson, F; Bekaert, V; Reilhac, A; Wurtz, J; Brasse, DA polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding. © Copyright 2020 IOP Publishing
- ItemImaging capabilities of the Inveon SPECT system using single-and multipinhole collimators(Society of Nuclear Medicine and Molecular Imaging, 2013-09-05) Boisson, F; Zahra, D; Parmar, A; Grégoire, MC; Meikle, SR; Hamze, H; Reilhac, AThe Inveon small-animal SPECT system comes with several types of multipinhole collimator plates. We evaluate here the performance measurements of the Inveon SPECT system using 6 different collimators: 3 dedicated for mouse imaging and 3 for rat imaging. Methods: The measured performance parameters include the sensitivity, the spatial resolution using line sources, the ultra-micro Derenzo phantom, the recovery coefficient and the noise measurements using the National Electrical Manufacturers Association NU-4 image quality phantom, obtained with the 2 reconstruction algorithms available with the Inveon Acquisition Workplace, version 1.5—the 3-dimensional ordered-subset expectation maximization (3DOSEM) and the 3-dimensional maximum a posteriori (3DMAP). Further, the overall performance of the system is illustrated by an animal experiment. Results: The results show that the Inveon SPECT scanner offers a spatial resolution, measured at the center of the field of view, ranging from 0.6 to 1 mm with the collimator plates dedicated to mouse imaging and from 1.2 to less than 2 mm with rat collimator plates. The system sensitivity varies from 29 to 404 cps/MBq for mouse collimators and from 53 to 175 cps/MBq for rat collimators. The image quality study showed that 3DMAP allows better noise reduction while preserving the recovery coefficient, compared with other regularization strategies such as the premature termination of the 3DOSEM reconstruction or 3DOSEM followed by gaussian filtering. Conclusion: The acquisition parameters, such as the collimator set and the radius of rotation, offer a wide range of possibilities to apply to a large number of biologic studies. However, special care must be taken because this increase in sensitivity can be offset by image degradation, such as image artifacts caused by projection overlap and statistical noise due to a higher number of iterations required for convergence. 3DMAP allowed better noise reduction while maintaining relatively constant recovery coefficients, as compared with other reconstruction strategies. © 2013 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
- ItemNEMA NU 4-2008 validation and applications of the PET-SORTEO Monte Carlo simulations platform for the geometry of the Inveon PET preclinical scanner(IOP Publishing, 2013-09-10) Boisson, F; Wimberley, CA; Lehnert, W; Zahra, D; Pham, TQ; Perkins, G; Hamze, H; Grégoire, MC; Reilhac, AMonte Carlo-based simulation of positron emission tomography (PET) data plays a key role in the design and optimization of data correction and processing methods. Our first aim was to adapt and configure the PET-SORTEO Monte Carlo simulation program for the geometry of the widely distributed Inveon PET preclinical scanner manufactured by Siemens Preclinical Solutions. The validation was carried out against actual measurements performed on the Inveon PET scanner at the Australian Nuclear Science and Technology Organisation in Australia and at the Brain and Mind Research Institute and by strictly following the NEMA NU 4-2008 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction and count rates, image quality and Derenzo phantom studies. Results showed that PET-SORTEO reliably reproduces the performances of this Inveon preclinical system. In addition, imaging studies showed that the PET-SORTEO simulation program provides raw data for the Inveon scanner that can be fully corrected and reconstructed using the same programs as for the actual data. All correction techniques (attenuation, scatter, randoms, dead-time, and normalization) can be applied on the simulated data leading to fully quantitative reconstructed images. In the second part of the study, we demonstrated its ability to generate fast and realistic biological studies. PET-SORTEO is a workable and reliable tool that can be used, in a classical way, to validate and/or optimize a single PET data processing step such as a reconstruction method. However, we demonstrated that by combining a realistic simulated biological study ([11C]Raclopride here) involving different condition groups, simulation allows one also to assess and optimize the data correction, reconstruction and data processing line flow as a whole, specifically for each biological study, which is our ultimate intent. © 2017 IOP Publishing
- ItemOptimisation of PET data processing for a single injection experiment with [11C]Raclopride using a simulations based approach(Society of Nuclear Medicine, 2014-11-05) Wimberley, CA; Angelis, GI; Boisson, F; Callaghan, PD; Fischer, K; Pichler, BJ; Meikle, SR; Grégoire, MC; Reilhac, AObjectives Positron emission tomography (PET) with [11C]Raclopride is an important tool for studying dopamine D2 receptor expression in vivo. [11C]Raclopride PET binding experiments conducted using the Partial Saturation Approach (PSA) (a simple, single injection experiment, Delforge 1995) allow the estimation of receptor density (Bavail) and the in vivo affinity 1/(KD). To achieve accurate and stable parameter estimates, and the ability to detect small changes in these parameters, the impact of the data processing chain should be investigated and optimised. Methods Two groups of PET scans were generated for a Partial Saturation Approach (PSA) experiment using Monte Carlo simulation software with a biological phenomenon inferred between the groups. The kinetic parameters Bavail and KD were estimated and the impact of spatial smoothing, temporal denoising and image resolution recovery on the statistical detectability of change in the estimates was investigated. Results Before optimisation, the inferred Bavail difference between the two groups was underestimated by 42% and detected in 66% of cases (at p<0.05), while a false decrease of KD by 13% was detected in more than 11% of cases. After optimisation, the calculated Bavail difference was underestimated by only 3.7% and detected in 89% of cases, while a false slight increase of KD by 3.7 % was detected in only 2% of cases. Conclusions The use of Monte Carlo generated PET scans allowed the optimisation of the data processing chain in order to reliably estimate and detect changes in the parameters Bavail and KD.
- ItemSimulation-based optimisation of the PET data processing for partial saturation approach protocols(Elsevier B.V., 2014-08-15) Wimberley, CA; Angelis, GI; Boisson, F; Callaghan, PD; Fischer, K; Pichler, BJ; Meikle, SR; Grégoire, MC; Reilhac, APositron emission tomography (PET) with [11C]Raclopride is an important tool for studying dopamine D2 receptor expression in vivo. [11C]Raclopride PET binding experiments conducted using the Partial Saturation Approach (PSA) allow the estimation of receptor density (Bavail) and the in vivo affinity appKD. The PSA is a simple, single injection, single scan experimental protocol that does not require blood sampling, making it ideal for use in longitudinal studies. In this work, we generated a complete Monte Carlo simulated PET study involving two groups of scans, in between which a biological phenomenon was inferred (a 30% decrease of Bavail), and used it in order to design an optimal data processing chain for the parameter estimation from PSA data. The impact of spatial smoothing, noise removal and image resolution recovery technique on the statistical detection was investigated in depth. We found that image resolution recovery using iterative deconvolution of the image with the system point spread function associated with temporal data denoising greatly improves the accuracy and the statistical reliability of detecting the imposed phenomenon. Before optimisation, the inferred Bavail variation between the two groups was underestimated by 42% and detected in 66% of cases, while a false decrease of appKD by 13% was detected in more than 11% of cases. After optimisation, the calculated Bavail variation was underestimated by only 3.7% and detected in 89% of cases, while a false slight increase of appKD by 3.7% was detected in only 2% of cases. We found during this investigation that it was essential to adjust a factor that accounts for difference in magnitude between the non-displaceable ligand concentrations measured in the target and in the reference regions, for different data processing pathways as this ratio was affected by different image resolutions. © 2014 Elsevier B.V..
- ItemSimultaneous scanning of two mice in a small-animal PET scanner: a simulation-based assessment of the signal degradation(IOP science publishing, 2016-01-21) Reilhac, A; Boisson, F; Wimberley, CA; Parmar, A; Zahra, D; Hamze, H; Davis, E; Arthur, A; Bouillot, C; Charil, A; Grégoire, MCIn PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies. © 2016 Institute of Physics and Engineering in Medicine
- ItemTest-retest reliability and inter scanner variability of 11C-raclopride striatal binding potentials between two INVEON PET/CT imaging systems for naïve Sprague Dawley rats(Wiley, 2014-04-16) Callaghan, PD; Zahra, D; Wimberley, CA; Arthur, A; Rahardjo, GL; Hamze, H; Davis, E; Nguyen, A; Boisson, F; Perkins, G; Pascali, G; Reilhac, A; Grégoire, MCBackground: 11C-raclopride is a routine tracer for quantification of dopamine D2 receptors in neurological and psychiatric disease. D2 imaging in key longitudinal models has significant utility of understanding mechanisms and therapeutic interventions. Aims: Optimisation of preclinical imaging and data analysis protocols for 11C-raclopride in rat brain. Methods: a) Test-retest reliability: Naïve male Sprague Dawley rats (n = 6) underwent test-retest assessment of binding potential variability, with two scans, 1 week apart. Rats were anaesthetised (1–5% isoflurane) and received 11C-raclopride (>0.1 nmol, 20–40 MBq) during 1 hour image acquisition (Siemens Inveon PET/CT), followed by a 10 minute CT scan. b) Assessment of the intersystem variability of the INVEON scanners (n = 12). Test-retest experiments were performed on a second INVEON system. c) Assessment of inter system variability with arterial blood sampling (n = 5). Acquisitions were performed (as above) with prior femoral artery cannulation: 23 blood samples (∼30 ul) were collected during PET acquisition, and plasma metabolite corrected input functions generated. PET list mode data were histogrammed (23 frames) and reconstructed with 2D filtered backprojection algorithm. The impact of some post-reconstruction image processing techniques, such iterative deconvolution of the image and data denoising techniques, onto the accuracy and reliability of the computed parameter of interest were also investigated. Binding potential parametric maps were calculated from the dynamic PET data (using either a standard reference tissue modelling using the cerebellum TAC (test-retest), and or a 2 compartment kinetic modelling with input function). Preliminary results: Significant improvements were seen for tissue activity data after denoising /iterative deconvolution (see figure). Analysis of binding potential data are currently in progress. Conclusion: Assessment of within and intersystem variability will aid the appropriate statistical design of future longitudinal 11C-raclopride imaging studies. Improvements from post-reconstruction image processing techniques show significant benefits. © 1999-2022 John Wiley & Sons, Inc.