Journal Articles
Browse
Browsing Journal Articles by Author "Abakumov, AM"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemConstructing “Li-rich Ni-rich” oxide cathodes for high-energy-density Li-ion batteries(Royal Society of Chemistry, 2023-01-26) Li, B; Rousse, G; Zhang, L; Avdeev, M; Deschamps, M; Abakumov, AM; Tarascon, JMThe current exploration of high-energy-density cathode materials for Li-ion batteries is mainly concentrated on either so-called “Li-rich” or “Ni-rich” oxides. However, both are suffering from formidable practical challenges. Here, we combine these two concepts to obtain “Li-rich Ni-rich” oxides in pursuit of more practical high-energy-density cathodes. As a proof of concept, we synthesized an array of Li1+yNi(3−5y)/3Mo2y/3O2 oxides, whose structures were identified to be the coexistence of LiNiO2-rich and Li4MoO5-rich domains with the aid of XRD, TEM, and NMR techniques. Such an intergrowth structure of 5–20 nm size enables excellent mechanical and structural reversibility for the layered rock-salt LiNiO2-rich domain upon cycling thanks to the robust cubic rock-salt Li4MoO5-rich domain enabling an “epitaxial stabilization” effect. As a result, we achieved high capacities (>220 mA h g−1) with Ni contents as low as 80%; the Li1.09Ni0.85Mo0.06O2 member (y = 0.09) shows much improved cycling performances (91% capacity retention for 100 cycles at C/10) compared with pure LiNiO2. This work validates the feasibility of constructing Li-rich Ni-rich compounds in the form of intergrowing domains and hence unlocks vast possibilities for future cathode design. © The Royal Society of Chemistry
- ItemMastering the synthesis of high Na-content, moisture-stable layered oxide cathode for Na-ion batteries(Elsevier, 2024-09) Grépin, E; Jacquet, Q; Moiseev, IA; Iadecola, A; Rousse, G; Avdeev, M; Abakumov, AM; Tarascon, JM; Mariyappan, SSodium layered oxides NaxMO2 (x ≤ 1 and M = transition metal) are of great interest for sodium-ion batteries due to their high energy density and cost-effectiveness. However, these materials, whether they are stoichiometric (Na/M ≈ 1 as in O3 NaMO2) or not (Na/M ≈ 0.7 as in P3/P2 NaxMO2), have certain disadvantages, namely sensitivity to humidity or inadequate capacity, respectively. Herein, we propose an intermediate composition Na0.85Ni0.38Zn0.04Mn0.48Ti0.1O2 that we succeed to stabilize in either O3 or a nanoscale mixture of O3–P3 or O3–P2 phases as proven by X-ray diffraction and transmission electron microscopy, through complex synthesis approaches including quenching, slow cooling and annealing in different atmospheres (Ar, air, O2 etc). We rationalize the stabilization of different phases and microstructure as a function of synthesis conditions and show how it influences the electrochemical performance. Through this study we identified a single phase O3 Na0.85Ni0.38Zn0.04Mn0.48Ti0.1O2 synthesized at 1000 °C in air, which exhibits a high capacity of ∼170 mAh/g and good moisture stability. Furthermore, thanks to the synthesis-structure- electrochemical performance relationship identified here, we believe that this study will provide a reliable basis for optimizing the synthesis for best performing sodium layered oxides for commercialization. © 2024 Elsevier B.V.
- ItemMonoclinic α-Na2FePO4F with strong antisite disorder and enhanced Na+ diffusion(American Chemical Society, 2020-11-02) Kirsanova, MA; Akmaev, AS; Aksyonov, DA; Ryazantsev, SV; Nikitina, VA; Filimonov, DS; Avdeev, M; Abakumov, AMA new monoclinic α-polymorph of the Na2FePO4F fluoride-phosphate has been directly synthesized via a hydrothermal method for application in metal-ion batteries. The crystal structure of the as-prepared α-Na2FePO4F studied with powder X-ray and neutron diffraction (P21/c, a = 13.6753(10) Å, b = 5.2503(2) Å, c = 13.7202(8) Å, β = 120.230(4)°) demonstrates strong antisite disorder between the Na and Fe atoms. As revealed with DFT-based calculations, α-Na2FePO4F has low migration barriers for Na+ along the main pathway parallel to the b axis, and an additional diffusion bypass allowing the Na+ cations to go around the Na/Fe antisite defects. These results corroborate with the extremely high experimental Na-ion diffusion coefficient of (1–5)·10–11 cm2·s–1, which is 2 orders of magnitude higher than that for the orthorhombic β-polymorph ((5–10)·10–13 cm2·s–1). Being tested as a cathode material in Na- and Li-ion battery cells, monoclinic α-Na2FePO4F exhibits a reversible specific capacity of 90 and 80 mAh g–1, respectively. © 2020 American Chemical Society
- ItemUnlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution(Springer Nature, 2021-01-11) lorem, Ipsum; Wang, Q; Mariyappan, S; Rousse, G; Morozov, AV; Porcheron, B; Dedryvère, R; Wu, JP; Yang, WL; Zhang, LT; Chakir, M; Avdeev, M; Deschamps, M; Yu, YS; Cabana, J; Doublet, ML; Abakumov, AM; Tarascon, JMSodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g−1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.