Cation exchange in smectites as a new approach to mineral carbonation

dc.contributor.authorZeyen, Nen_AU
dc.contributor.authorWang, BLen_AU
dc.contributor.authorWilson, Sen_AU
dc.contributor.authorPaulo, Cen_AU
dc.contributor.authorStubbs, ARen_AU
dc.contributor.authorPower, IMen_AU
dc.contributor.authorSteele-Maclnnis, Men_AU
dc.contributor.authorLanzirotti, Aen_AU
dc.contributor.authorNewville, Men_AU
dc.contributor.authorPaterson, DJen_AU
dc.contributor.authorHamilton, JLen_AU
dc.contributor.authorJones, TRen_AU
dc.contributor.authorTurvey, CCen_AU
dc.contributor.authorDipple, GMen_AU
dc.contributor.authorSoutham, Gen_AU
dc.date.accessioned2025-09-12T05:04:37Zen_AU
dc.date.available2025-09-12T05:04:37Zen_AU
dc.date.issued2022-06-23en_AU
dc.date.statistics2024-10-30en_AU
dc.description.abstractMineral carbonation of alkaline mine residues is a carbon dioxide removal (CDR) strategy that can be employed by the mining industry. Here, we describe the mineralogy and reactivity of processed kimberlites and kimberlite ore from Venetia (South Africa) and Gahcho Kué (Canada) diamond mines, which are smectite-rich (2.3–44.1 wt.%). Whereas, serpentines, olivines, hydrotalcites and brucite have been traditionally used for mineral carbonation, little is known about the reactivity of smectites to CO2. The smectite from both mines is distributed as a fine-matrix and is saponite, Mm+x/mMx/mm+Mg3(AlxSi4−x)O10(OH)2·nH2O, where the layer charge deficiency is balanced by labile, hydrated interlayer cations (Mm+). A positive correlation between cation exchange capacity and saponite content indicates that smectite is the most reactive phase within these ultramafic rocks and that it can be used as a source of labile Mg2+ and Ca2+ for carbonation reactions. Our work shows that smectites provide the fast reactivity of kimberlite to CO2 in the absence of the highly reactive mineral brucite [Mg(OH)2]. It opens up the possibility of using other, previously inaccessible rock types for mineral carbonation including tailings from smectite-rich sediment-hosted metal deposits and oil sands tailings. We present a decision tree for accelerated mineral carbonation at mines based on this revised understanding of mineralogical controls on carbonation potential. © 2022 Zeyen, Wang, Wilson, Paulo, Stubbs, Power, Steele-Maclnnis, Lanzirotti, Newville, Paterson, Hamilton, Jones, Turvey, Dipple and Southam. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_AU
dc.identifier.articlenumber913632en_AU
dc.identifier.citationZeyen, N., Wang, B., Wilson, S., Paulo, C., Stubbs, A. R., Power, I. M., Steele-Maclnnis, M., Lanzirotti, A., Newville, M., Paterson, D. J., Hamilton, J. L., Jones, T. R., Turvey, C. C., Dipple, G. M., & Southam, G. (2022). Cation exchange in smectites as a new approach to mineral carbonation. Frontiers in Climate, 4, 913632. doi: 10.3389/fclim.2022.913632en_AU
dc.identifier.issn2624-9553en_AU
dc.identifier.journaltitleFrontiers in Climateen_AU
dc.identifier.urihttps://doi.org/10.3389/fclim.2022.913632en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16492en_AU
dc.identifier.volume4en_AU
dc.language.isoenen_AU
dc.publisherFrontiersen_AU
dc.subjectCationsen_AU
dc.subjectMineralsen_AU
dc.subjectMinersen_AU
dc.subjectResiduesen_AU
dc.subjectCarbon dioxideen_AU
dc.subjectMineralogyen_AU
dc.subjectKimberlitesen_AU
dc.subjectSouth Africaen_AU
dc.subjectCanadaen_AU
dc.subjectMagnesiumen_AU
dc.subjectSiliconen_AU
dc.subjectCalciumen_AU
dc.subjectCarbon dioxideen_AU
dc.titleCation exchange in smectites as a new approach to mineral carbonationen_AU
dc.typeJournal Articleen_AU
Files