Browsing by Author "Zhang, ZD"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA colossal barocaloric effect induced by the creation of a high-pressure phase(Royal Society of Chemistry (RSC), 2023-01-13) Zhang, Z; Jiang, X; Hattori, T; Xu, X; Li, M; Yu, CY; Zhang, Z; Yu, DH; Mole, RA; Yano, SI; Chen, J; He, LH; Wang, CW; Wang, H; Li, B; Zhang, ZDAs a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting worldwide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF6 exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase. © Royal Society of Chemistry 2024.
- ItemGiant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate(AIP Publishing, 2024-07-21) Zhang, Z; Hattori, T; Song, R; Yu, DH; Mole, RA; Chen, J; He, LH; Zhang, ZD; Li, BSolid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF6) and sodium hexafluoroarsenate (NaAsF6) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF6 is a rhombohedral structure with space group R3¯ by neutron powder diffraction. There are three Raman active vibration modes in NaPF6 and NaAsF6, i.e., F2g, Eg, and A1g. The phase transition temperature varies with pressure at a rate of dTt/dP = 250 and 310 K GPa−1 for NaPF6 and NaAsF6. The pressure-induced entropy changes of NaPF6 and NaAsF6 are determined to be around 45.2 and 35.6 J kg−1 K−1, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions. © 2024 AIP Publishing LLC.
- ItemMagnetic ordering in the rhombohedral α-DyGa3(Elsevier, 2022-05-15) Cong, MR; Wang, CW; Ren, WJ; Avdeev, M; Ling, CD; Gao, F; Li, B; Zhang, ZDWe have succeeded in growing α-DyGa3 single crystals by the self-flux method and determined its magnetic structure by neutron powder diffraction. α-DyGa3 crystallizes in the rhombohedral SrSn3-type structure (R3̅m, #166, hR48), and the magnetic sublattice is comprised of staggering layers of triangular lattice of Dy. Magnetic ordering occurs below TN ~ 7.2 K with the magnetic propagation vector k = (1/2, 0, 1/2), results in an alternating stripe antiferromagnetic structure in the ab-plane described by the magnetic space group CC2/c (BNS #15.90, origin at (0, 0, 0)). At 3.5 K, the magnetic moment is 5.72(12) μB per Dy3+. The Dy3+ spins are lying in basal plane and perpendicular to the b-axis. © 2024 Elsevier B.V
- ItemThermal batteries based on inverse barocaloric effects(Science Advances, 2023-02) Zhang, Z; Li, K; Lin, SC; Song, R; Yu, DH; Wang, Y; Wang, JF; Kawaguchi, S; Zhang, Z; Yu, CY; Li, XD; Chen, J; He, LH; Mole, RA; Yuan, B; Ren, QY; Qian, K; Cai, ZL; Yu, JG; Wang, MC; Zhao, CY; Tong, X; Zhang, ZD; Li, BTo harvest and reuse low-temperature waste heat, we propose and realize an emergent concept-barocaloric thermal batteries based on the large inverse barocaloric effect of ammonium thiocyanate (NH4SCN). Thermal charging is initialized upon pressurization through an order-to-disorder phase transition, and the discharging of 43 J g-1 takes place at depressurization, which is 11 times more than the input mechanical energy. The thermodynamic equilibrium nature of the pressure-restrained heat-carrying phase guarantees stable long-duration storage. The barocaloric thermal batteries reinforced by their solid microscopic mechanism are expected to substantially advance the ability to take advantage of waste heat. Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
- ItemUltrasensitive barocaloric material for room-temperature solid-state refrigeration(Springer Nature, 2022-04-28) Ren, QY; Qi, J; Yu, DH; Zhang, Z; Song, R; Song, WL; Yuan, B; Wang, TH; Ren, WJ; Zhang, ZD; Tong, X; Li, BOne of the greatest obstacles to the real application of solid-state refrigeration is the huge driving fields. Here, we report a giant barocaloric effect in inorganic NH4I with reversible entropy changes of ΔSmax P0!P ∼71 J K−1 kg−1 around room temperature, associated with a structural phase transition. The phase transition temperature, Tt, varies dramatically with pressure at a rate of dTt/dP ∼0.79 K MPa−1, which leads to a very small saturation driving pressure of ΔP ∼40 MPa, an extremely large barocaloric strength of ΔSmax P0!P=ΔP∼1.78 J K−1 kg−1 MPa−1, as well as a broad temperature span of ∼41 K under 80 MPa. Comprehensive characterizations of the crystal structures and atomic dynamics by neutron scattering reveal that a strong reorientation-vibration coupling is responsible for the large pressure sensitivity of Tt. This work is expected to advance the practical application of barocaloric refrigeration. © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License.