Browsing by Author "Ye, AQ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of ingestion temperature on the pepsin-induced coagulation and the in vitro gastric digestion behavior of milk(Elsevier B. V., 2023-05) Yang, MX; Ye, AQ; Yang, Z; Everett, DW; Gilbert, EP; Singh, HPepsin-induced protein coagulation occurs in the gastric environment when the milk pH is above the isoelectric point of casein proteins. In this study, the effect of milk temperature (4–48 °C) on the hydrolysis of κ-casein by pepsin and the consequent protein coagulation was studied at pH 6.0 for 120 min. Quantitative determination of the released para-κ-casein showed that both the κ-casein hydrolysis reaction rate constant and the pepsin denaturation rate constant increased with an increase in temperature. The temperature coefficient (Q10) of the specific hydrolysis of κ-casein was calculated to be ∼1.95. The coagulation process was investigated by the evolution of the storage modulus (Gʹ). At higher temperature, the milk coagulated faster but had a lower firming rate and Gʹmax with larger aggregates and voids were observed. The digestion behavior of the milk ingested at 4 °C, 37 °C, or 50 °C was investigated for 240 min in a human gastric simulator, in which the milk temperature increased or decreased to 37 °C (body temperature) over ∼ 60 min. The coagulation of the 4 °C milk was slower than for the 37 °C and 50 °C milk. The curd obtained from the 4 °C milk had a looser and softer structure with a significantly higher moisture content at the initial stage of digestion (20 min) which, in turn, facilitated the breakdown and hydrolysis of the caseins by pepsin. During the digestion, the curd structure became more cohesive, along with a decrease in moisture content. The knowledge gained from this study provides insight into the effect of temperature on the kinetics of pepsin-induced milk coagulation and the consequent digestion behavior. © The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync- nd/4.0/).
- ItemSmall-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) study on the structure of sodium caseinate in dispersions and at the oil-water interface: effect of calcium ions(Elsevier B. V., 2022-04) Cheng, LR; Ye, AQ; Yang, Z; Gilbert, EP; Knott, RB; de Campo, L; Storer, B; Hemar, Y; Singh, HThe structure of sodium caseinate particles, as affected by the presence of calcium ions (Ca2+), in aqueous solution and in oil (toluene)-in-water emulsions, was investigated by small-angle X-ray and neutron scattering (SAXS and SANS). SAXS analyses indicated that the sodium caseinate dispersed in water as small particles with electrostatic interactions, which has a radius of gyration (Rg) of ~5 nm and an effective radius (Reff) of ~ 10 nm with an assuming spherical shape. In the presence of Ca2+, the caseinate particles aggregated as large particles with a hydrodynamic diameter > 100 nm as determined by dynamic light scattering. The networks within the large particles were self-assembled from the small Ca2+-cross-linked particles (Rg ~ 6.5–8.0 nm), as probed by SAXS. The fractal-like dimension increased from 2.5 to 3.4 with increasing protein and CaCl2 concentrations, suggesting a denser structure. The integrity of the caseinate particles at the oil-water interface was enhanced by Ca2+ cross-linking, as observed by transmission electron microscopy. The oilsingle bondwater interface stabilised by Ca2+-cross-linked caseinate particles was ~ 30 nm thick, six times thicker than that stabilised by sodium caseinate (~ 5 nm) as analysed by SANS with contrast variation technique. Quantifying the structure of sodium caseinate in an aqueous solution and at the oil-water interface provides valuable insights for designing new casein-based functional materials. © 2022 Elsevier Ltd