Browsing by Author "Withford, M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharacterizing concrete corrosion below sewer tidal levels at chemically dosed locations(Elsevier, 2020-10-15) Taheri, S; Ams, M; Bustamante, H; Vorreiter, L; Bevitt, JJ; Withford, M; Clark, SMUnexplainable concrete softening below the water line has been observed by Sydney Water in their gravity sewer network, some of which is subjected to corrosion control methods using chemical ferrous chloride (FeCl2) dosing of the wastewater. We applied a combination of physical and chemical tools to determine the properties of the top 20 mm of concrete cores recovered from sewer pipes. These techniques consist of neutron tomographic imaging, scanning electron microscopy, hardness mapping, and pH profiling. Concrete cores were collected from roof (crown), tidal (wall) and below flow regions of gravity sewer pipes of Sydney Water's wastewater system from locations that received no treatment as well as locations dosed with FeCl2. All samples showed a degree of softening of the surface exposed to the sewerage with an associated depletion in calcium concentration and reduced pH in the same regions. © 2020 Elsevier Ltd.
- ItemMigration and formation of an iron rich layer during acidic corrosion of concrete with no steel reinforcement(Elsevier, 2021-11-22) Taheri, S; Giri, P; Ams, M; Bevitt, JJ; Bustamante, H; Madadi, M; Kuen, T; Gonzalez, J; Vorreiter, L; Withford, M; Clark, SMThe present study aimed to study the formation, enrichment, and relocation of iron-rich regions in the corroded area of concrete blocks, made without rebar, subjected to severely corrosive highly acidic conditions. In this work, three different concrete mix designs (a proprietary ready-mixed concrete, and laboratory made mortar and concrete) were corroded under induced accelerated conditions in sulfuric acid solutions at pH 1 for a duration of one to six months, in the absence of reinforcement (i.e. rebar) or iron-oxidizing bacteria. A variety of physicochemical and mechanical techniques were applied to monitor and assess the corrosion progress, and physical and chemical changes in the corroded samples. Results indicated a pronounced presence of iron rich layer (iron oxide/hydroxide) at the border of the corrosion front and the transition zone in all mix designs in the form of a ring. While existing papers in the literature describe the iron coming from the rebar, the only source of mobile iron in this experiment was from the iron oxide (Fe2O3) already in the cement. This zone (in a form of a ring) had an average iron content of 2.0 wt% and moved away from the surface to the center of the samples submerged in a sulfuric acid bath with the increase of immersion time, and it was accompanied by hairline cracks. The movement of this zone was in the same direction as sulfate (from acidic media) ingress and the opposite direction of calcium ion leaching, (Ca leaching). The rate of corrosion, the hardness and the compressive strength of concrete are mostly affected by the concrete mix design, the iron-ring enrichment and relocation had no significant impact on them. Detection of the iron-rich zone is an indication of the depth of corrosion at advanced stages in concrete products. © 2021 Elsevier Ltd