Browsing by Author "Wilson, SA"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemAncient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere(Springer Nature, 2016-05-11) Tompkins, AG; Bowlt, L; Genge, M; Wilson, SA; Brand, HEA; Wykes, JLIt is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean. © 2016 Macmillan Publishers Limited
- ItemThe critical role of bacteria in mineral carbonation of kimberlite(Goldschmidt, 2022-07-12) Jones, TR; Poitras, J; Senzani, K; Ndlovu, S; Vietti, A; Paterson, DJ; Wilson, SA; Southam, GThe breakdown of ultramafic rock during natural weathering captures carbon dioxide from the atmosphere to form carbonate minerals. Kimberlite, an ultramafic rock that can produce diamond weathers when exposed to water. These water-rock interactions also contribute to the growth of bacteria, which accelerate the weathering process. Yellow ground (oxidized Kimberlite found at the surface) samples from the South African Voorspoed and Kareevlei mines contained both molecular signatures (16SrDNA) and viable bacteria. Our molecular analyses highlighted a bacterial population consistent with serpentinite soils and demonstrated that bacteria play a role in yellow ground formation. These yellow ground cultures can grow using only kimberlite as a substrate, promoting weathering in order to live, and providing cultures that are important to natural weathering, yellow ground formation and subsequent mineral carbonation. In order to demonstrate the importance of biology in mineral carbonation of kimberlite, we performed X-Ray Fluorescent Microscopy (XFM) at the Australian Synchrotron to obtain structural and compositional analysis of the South African Venetia mine’s massive volcaniclastic kimberlite (MVK) Coarse Residue Deposit (CRD) with and without biofilm (weathering), 50-year-old Cullinan CRD and definitive, friable Kareevlei yellow ground. These analyses demonstrated that calcium, potassium and iron can be used as tracers for weathering and mineral carbonation. Our small laboratory and larger (1000 L) field-based mineral carbonation experiments both demonstrated the importance of photosynthetic biofilms in the carbonation of kimberlite residue. All of our experiments produced intergranular cements, which stabilised the CRD residue, providing a strategy to increase mine safety while sequestering carbon. We observed continued mineral carbonation with depth demonstrating that carbonation will continue as the kimberlite is buried on the mine site, which will achieve even greater carbon offsets than anticipated. Our pilot scale field experiment demonstrated that we offset 20% (on a mass equivalent) of the annual mine emissions in one year using bacterial carbonation, with the likelihood of continued carbonation ensuring that we will have the capacity to produce a carbon neutral mine.
- ItemIron isotope geochemistry and mineralogy of jarosite in sulfur-rich sediments(Elsevier, 2020-02-01) Whitworth, AJ; Brand, HEA; Wilson, SA; Frierdich, AJJarosite is a common mineral in acidic, sulfate-rich environments where it is critical in regulating the acidity of aquatic systems and the mobility of trace elements and potential contaminants. This research aims to understand jarosite formation and recrystallization in these environments by examining the stable iron isotope geochemistry of jarosite at two coastal sites in Victoria, Australia: Fossil Beach and Southside Beach. Jarosite occurs at high abundance as beds, veins, surface coatings and nodules within oxidized zones of sulfidic sediment outcrops and as pebbles, cobbles, and boulders at the base of the outcrops within the intertidal zone, making these two beaches ideal natural laboratories. Synchrotron powder X-ray diffraction (XRD) and ICP-MS results indicate that samples are comprised predominantly of natrojarosite, often with substantial K substitution. Rietveld refinement of XRD patterns shows that most jarosite samples are a solid-solution of Na-K jarosite, differing from previous observations that (near-)end-member mixing predominantly occurs in nature. The iron isotope composition of the jarosite samples have δ56Fe values between −1.91 and +1.24‰ (relative to IRMM-014), an exceptionally large range that partially overlaps with the δ56Fe values of the sulfidic sediment precursor (−0.54 to +1.30‰). There is a negative relationship between the alkali ratio [Na/(Na + K)] and iron isotope composition, with the heavier iron isotopes preferentially partitioned into K-rich jarosite. The large range in δ56Fe values of jarosite likely results from a combination of the variable δ56Fe values of the precursor sulfides, thermodynamic differences between Na- versus K-bearing jarosite, and an open-system Rayleigh distillation during jarosite formation. © 2020 Elsevier Ltd.
- ItemMineral diversity on Europa: exploration of phases formed in the MgSO4–H2SO4–H2O ternary(American Chemical Society, 2021-06-22) Maynard-Casely, HE; Brand, HEA; Wilson, SA; Wallwork, KSThere is increasing evidence that the surface materials on Europa are influenced by endogenic and exogenic processes and chemistry. To explore how this may drive the diversity of resultant minerals on the surface of Europa, this study has explored a number of samples within the MgSO4–H2SO4–H2O ternary with synchrotron X-ray powder diffraction across a large temperature range (100–300 K). The crystalline phase composition of these samples has been charted, and four new crystalline phases have been identified. The structure of one of these is presented, along with discussion of the possible contents of two of the other phases. Overall this study demonstrates that the interaction between exogenic and endogenic processes has the possibility to drive greater mineral diversity on Europa, as well as its neighboring icy moons. © 2021 American Chemical Society
- ItemPreservation of terrestrial microorganisms and organics within alteration products of chondritic meteorites from the Nullarbor Plain, Australia(Mary Ann Liebert, Inc., 2022-04-13) Tait, AW; Wilson, SA; Tomkins, AG; Hamilton, JL; Gagen, EJ; Holman, AI; Grice, K; Preston, LJ; Paterson, DJ; Southam, GMeteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite–gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change. © 2022 Mary Ann Liebert, Inc
- ItemTransition metal mobility and recoverability from weathered serpentinite and serpentinite skarn tailings from Lord Brassey Mine, Australia and Record Ridge, British Columbia, Canada(Goldschmidt, 2022-07-14) Honda-McNeil, M; Wilson, SA; Locock, A; Mililli, B; Zeyen, N; Wang, B; Turvey, C; Vessey, CJ; Patel, AS; Hamilton, J; Southam, G; Poitras, J; Jones, TR; Jowitt, S; Lowock, AAs mineral resources become scarcer, companies are lowering their ore cut-off grades and resorting to exploring deeper underground and in more isolated areas. Incorporating tailings storage facilities and tailings reprocessing as part of the ore processing circuit can potentially extend the lives of mines and save on future exploration costs. Ultramafic and mafic mine tailings host resources including first and second row transition metals, such as nickel (Ni), cobalt (Co), and platinum group elements (PGE), whose high value and recovery could serve as a motivator for existing mines to reprocess their tailings. Many of these target metals are initially hosted by olivine, are repartitioned during serpentinization to form sulfides, oxides and alloys, and then are remobilized during weathering to form authigenic carbonates, sulfates and oxyhydroxides. Reprocessing tailings may further provide environmental benefits, including a reduction in waste output and the ability to offset greenhouse gas emissions by enhanced silicate-weathering and carbonation reactions. Here we use powder X-ray diffraction, scanning electron microscopy, electron probe micro-analysis and synchrotron X- ray fluorescence mapping to demonstrate how first and second row transition metals are mobilized to their final sinks. Samples of serpentinite, skarn and weathered tailings from the historical Lord Brassey nickel mine in Tasmania, Australia and weathered outcrops of serpentinite ore from the proposed magnesium mine in Record Ridge, BC, Canada are analyzed and compared. Preliminary results from these climatically similar localities indicate clear transition metal dissemination patterns across alteration zones and distinct partitioning behavior (ex. homogenous distribution of Ni within sulfides) in weathering products. By developing an understanding of the sinks for metals across the mining lifecycle, we aim to cultivate an economically