Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wilson, BR"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Mean residence time of soil organic carbon in aggregates under contrasting land uses based on radiocarbon measurements
    (University of Arizona Department of Geosciences, 2013-01-01) Rabbi, SMF; Hua, Q; Daniel, H; Lockwood, PV; Wilson, BR; Young, IM
    Radiocarbon is a useful tool for studying carbon dynamics in soil aggregates. The objective of the current study was to determine the mean residence time (MRT) of soil organic carbon (SOC) in macroaggregates and microaggregates under contrasting land uses. Contrasting land uses investigated at Alfisol (equivalent to Dermosol in Australian Soil Classification) sites were native pasture (NP), crop-pasture rotation (CP), and Eucalypt woodland (WL), whereas in Oxisol (Ferrosol in Australian Soil Classification) sites, land uses comprised improved pasture (IP), cropping (CR), and forest (FR). Soil aggregates were separated into macroaggregates (250-2000 mu m) and microaggregates (53-250 mu m) by wet-sieving, and their C-14 signatures were determined by accelerator mass spectrometry (AMS). The C-14 activity in both macro- and microaggregates was >100 pMC, indicating the presence of post-bomb carbon in the soil. The mean residence time (MRT) of SOC in macro- and microaggregates (MRTagg) was on average 68 yr longer in the Oxisol compared with that in the Alfisol. The MRTagg in microaggregates was 10 yr longer than that of macroaggregates in the Alfisol. However, the MRTagg in microaggregates was 50 yr shorter compared to macroaggregates in the Oxisol. The MRT of macro- and microaggregates can be separated into active, slow, and stable SOC pools. Among the 3 SOC pools, the MRT of the stable pool is of higher significance in terms of SOC stabilization in soil aggregates because of its longer MRT. However, isolation and direct MRT estimation of the stable SOC pool is difficult. The MRT of active and slow SOC pools associated with macro- and microaggregates was measured using a SOC mineralization experiment to estimate the MRT of the stable SOC pool under contrasting land uses by applying a mass balance criterion. The MRT of active (MRTA) and slow (MRTS) SOC pools in macro- and microaggregates varied between 1-50 days and 13-38 yr, respectively. The estimated MRT of the stable pool carbon (MRTP) in microaggregates was 897 yr longer compared to that of macroaggregates in the Alfisol. However, in the Oxisol, MRTP in microaggregates was 568 yr shorter than that of macroaggregates. Among the land uses, WL in Alfisol and CR in Oxisol had longer MRTagg and MRTP compared to other land uses. © 2013, University of Arizona.
  • No Thumbnail Available
    Item
    Soil properties on sub-Antarctic Macquarie Island: fundamental indicators of ecosystem function and potential change
    (Elsevier, 2019-06) Wilson, BR; Wilson, SC; Sindel, B; Williams, LK; Hawking, KL; Shaw, J; Tighe, M; Hua, Q; Kristiansen, P
    We examined the nature and properties of soils on Australian sub-Antarctic Macquarie Island to determine key environmental factors driving their distribution, development and change. We provide the first classification of these soils using Australian and international (WRB) systems while combining elemental, stable and radio-isotope analysis to interpret processes of soil formation and key controlling environmental factors. Soil organic carbon (SOC) and total nitrogen (TN) concentrations across the island were influenced largely by elevation and topographic position with coastal soils and wetter depressions containing more SOC and TN compared with drier and higher elevation locations. Soils on the high, exposed plateau of the island contained low SOC and TN concentrations by comparison. Results suggested that soils of the coastal zone are subject to ongoing aggradation with significant inputs of nutrient, particularly extractable P (Ext P), from oceanic and especially avifauna sources. Nutrient subsidy was concentrated on coastal margins and the more sheltered eastern side of the island, diminishing significantly with increasing elevation and distance from the coast. Soils of the central plateau contained very low Ext P concentrations throughout the profile and appear to be relic if not degrading. Further comprehensive soil mapping, classification and monitoring across Macquarie Island will elucidate the important role that soils serve for healthy ecosystem function in these sub-Antarctic environments and provide early warning indicators of significant environmental change. © 2019 Elsevier B.V.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback