Browsing by Author "Wang, DY"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAb initio thermodynamic optimization of Ni-rich Ni–Co–Mn oxide cathode coatings(Elsevier, 2020-02-29) Liu, B; Liu, JH; Yang, J; Wang, D; Ye, CC; Wang, DY; Avdeev, M; Shi, S; Yang, JH; Zhang, WQThe effectiveness of surface coatings in improving the stability and cycling performance of cathodes has been demonstrated since they are first proposed in the 1990's. However, the progress since then is made mostly using the trial-and-error method. Herein, an automated electrochemical-chemical stability design scheme based on first-principles thermodynamics calculations of reaction models is presented to optimize coatings for Ni-rich nickel–cobalt–manganese oxide (NCM) cathodes. Given that the coating must possess a wider electrochemical window than the cathode without the occurrence of Li-ion redistribution at the cathode/coating interface, the reaction energies of both lithium insertion/extraction and decomposition process associated with the coating are used as one of the two screening criteria. As the coating is also required to be chemically stable in Li residues and hydrofluoric-acid containing liquid environment, the positive reaction energy achieved by adjusting molar ratio of the components is used as another criterion. Using these two screening criteria, we demonstrate that lithium-containing metal phosphates, rather than previously suggested Li-containing metal oxides, are the optimal coatings for Ni-rich NCM cathodes, which is confirmed experimentally. The proposed approach is general and can be used to find optimal coating materials for any other cathodes. © 2020 Elsevier B.V.
- ItemAnomalous structural evolution and glassy lattice in mixed‐halide hybrid perovskites(Wiley, 2022-05) Shahrokhi, S; Dubajic, M; Dai, ZZ; Bhattacharyya, S; Mole, RA; Rule, KC; Bhadbhade, MM; Tian, R; Mussakhanuly, N; Guan, X; Yin, Y; Nielsen, MP; Hu, L; Lin, CH; Chang, SLY; Wang, DY; Kabakova, IV; Conibeer, G; Bremner, S; Li, XG; Cazorla, C; Wu, THybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed‐halide hybrid perovskite single crystals of MAPbI3‐xBrx (MA = CH3NH3+ and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed‐halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed‐halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties. © 2022 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.