Browsing by Author "Wagstaff, OJ"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDistinct intercalation and conduction behaviors within an isostructural series Ba5R2Al2SnO1(American Chemical Society, 2024-07-30) Brown, AJ; Wagstaff, OJ; Evans, IR; Evans, JSO; Mole, RA; Wykes, JL; Avdeev, M; Ling, CDThe series Ba5R2Al2SnO13 (R = In, Y, Er, Ho, Tb) has been synthesized and structurally characterized by X-ray and neutron powder diffraction. All members have oxygen-deficient 10-layer hexagonal (10H) perovskite-type structures at high temperature and gain mass on cooling equivalent to ∼0.5 oxygen atoms per formula unit, observed by both thermogravimetric analysis and the occupancy of a vacant site in the oxygen substructure refined against neutron powder diffraction data. The origin of this mass gain varies with R: for R = In, Y, Er, and Ho, it is due to water uptake via a hydroxylation mechanism to form Ba5R2Al2SnO13.xH2O (x ≤ 0.5), with OH– ions occupying the vacant site and the other proton forming a second OH– in the oxygen substructure; while for R = Tb, it due to the oxidation of Tb3+ to Tb4+, with O2– ions occupying the vacant site. These chemico-structural differences are consistent with the measured conductivity behavior of the samples, whereby Ba5Er2Al2SnO13 is a proton conductor in air at moderate temperatures (∼10–4 S cm–1 at 500 °C) while Ba5Tb2Al2SnO13 is a mixed oxide ionic and electronic conductor. These differences were further confirmed by X-ray absorption spectroscopy and corroborated by quasielastic neutron scattering. © 2024 American Chemical Society.