Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Verbeeck, J"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Local magnetic structure at the Fe3O4/ZnO interface
    (Australian Institute of Physics, 2012-02-01) Brück, S; Paul, M; Tian, H; Müller, A; Fauth, K; Goering, E; Verbeeck, J; Van Tendeloo, G; Claessen, R
    Magnetite, Fe3O4, is a half-metal with 100% spin polarization of the minority band at the Fermi level. This together with its good conductivity match to standard semiconductors makes it a promising candidate for polarized spin injection into semiconductor materials such as Si, GaAs, or ZnO [1]. An important aspect for such applications is the magnetism directly at the interface between Fe3O4 and the semiconductor. Soft x-ray resonant magnetic reflectometry is a technique which is capable of providing structural and magnetic depth profiles with 0.1nm resolution. We present a detailed XRMR and electron energy loss spectroscopy (STEM/EELS) study of an epitaxial Fe3O4 thin film grown directly on a semiconducting ZnO substrate [2]. Consistent chemical profiles at the interface between ZnO and Fe3O4 are found from XRMR and EELS. The magnetic depth profile of tetragonal Fe3+ and octahedral Fe2+ ions in Fe3O4 is derived with monolayer resolution and reveals a change in the Fe stoichiometry directly at the interface.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback