Browsing by Author "Sorace, L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemModulation of slow magnetic relaxation in Gd(III)‐tetrahalosemiquinonate complexes(Wiley, 2022-07-15) Dunstan, MA; Brown, DS; Sorace, L; Mole, RA; Boskovic, CIncorporating lanthanoid(III)‐radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single‐molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln‐radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)‐radical compounds of formula [Gd(18‐c‐6)X4SQ(NO3)].I3 (18‐c‐6=18‐crown‐6, X4SQ⋅−=tetrahalo‐1,2‐semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X‐ray crystallography, UV‐Visible‐NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd‐SQ∼−2.0 cm−1 (Hex=−2JGd‐SQ(SGdSSQ)) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization. © 2022 The Authors. Chemistry – An Asian Journal published by Wiley-VCH GmbH - Open Access - CC-BY-NC
- ItemSingle-ion anisotropy and exchange coupling in cobalt( ii )-radical complexes: insights from magnetic and ab initio studies(Royal Society of Chemistry, 2019-10-07) Gransbury, GK; Boulon, ME; Mole, RA; Gable, RW; Moubaraki, B; Murray, KS; Sorace, L; Soncini, A; Boskovic, CThe concurrent effects of single-ion anisotropy and exchange interactions on the electronic structure and magnetization dynamics have been analyzed for a cobalt(II)-semiquinonate complex. Analogs containing diamagnetic catecholate and tropolonate ligands were employed for comparison of the magnetic behavior and zinc congeners assisted with the spectroscopic characterization and assessment of intermolecular interactions in the cobalt(II) compounds. Low temperature X-band (ν ≈ 9.4 GHz) and W-Band (ν ≈ 94 GHz) electron paramagnetic resonance spectroscopy and static and dynamic magnetic measurements have been used to elucidate the electronic structure of the high spin cobalt(II) ion in [Co(Me3tpa)(Br4cat)] (1; Me3tpa = tris[(6-methyl-2-pyridyl)methyl]amine, Br4cat2− = tetrabromocatecholate) and [Co(Me3tpa)(trop)](PF6) (2(PF6); trop− = tropolonate), which show slow relaxation of the magnetization in applied field. The cobalt(II)-semiquinonate exchange interaction in [Co(Me3tpa)(dbsq)](PF6)·tol (3(PF6)·tol; dbsq− = 3,5-di-tert-butylsemiquinonate, tol = toluene) has been determined using an anisotropic exchange Hamiltonian in conjunction with multistate restricted active space self-consistent field ab initio modeling and wavefunction analysis, with comparison to magnetic and inelastic neutron scattering data. Our results demonstrate dominant ferromagnetic exchange for 3+ that is of similar magnitude to the anisotropy parameters of the cobalt(II) ion and contains a significant contribution from spin–orbit coupling. The nature of the exchange coupling between octahedral high spin cobalt(II) and semiquinonate ligands is a longstanding question; answering this question for the specific case of 3+ has confirmed the considerable sensitivity of the exchange to the molecular structure. The methodology employed will be generally applicable for elucidating exchange coupling between orbitally-degenerate metal ions and radical ligands and relevant to the development of bistable molecules and their integration into devices. © The Royal Society of Chemistry 2019. Open Access CC-NC