Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shew, BY"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction
    (Elsevier Science BV, 2013-12-15) Hu, CW; Sharma, N; Chiang, CY; Su, HC; Peterson, VK; Hsieh, HW; Lin, YF; Chou, WC; Shew, BY; Lee, CH
    In-situ neutron powder diffraction was employed to investigate the structural evolution of the electrode materials in a commercial lithium-ion battery used for electric buses in Taiwan. The battery, containing a vanadium-added LiFePO4 cathode, does not exhibit a delayed phase transition between LiFePO4 (triphylite) and FePO4 (heterosite) suggesting that the delayed phase transition can be suppressed through the use of vanadium-added LiFePO4 cathodes, which also enhances the capacity and prolongs the cycle life of these batteries. Furthermore, we characterize the readily reversible structural change of the anode (LixC6 where 0 < x <= 1) and correlate this to battery voltage. © 2013, Elsevier Ltd.
  • No Thumbnail Available
    Item
    Vanadium substitution of LiFePO4 cathode materials to enhance the capacity of LiFePO4-based lithium-Ion batteries
    (American Chemical Society, 2012-11-22) Chiang, CY; Su, HC; Wu, PJ; Liu, HJ; Hu, CW; Sharma, N; Peterson, VK; Hsieh, HW; Lin, YF; Chou, WC; Lee, CH; Lee, JF; Shew, BY
    The mechanism of enhancing the capacity of the LiFePO(4) cathodes in lithium ion batteries by the addition of a small amount of vanadium, which locate on the lithium site and induce lithium vacancies in the crystal structure, is reported in this article. As a result, the capacity increases from 138 mAh/g found for pristine LiFePO(4) to 155 mAh/g for the V-added compound, and the conductivity increases from 4.75 x 10(-4) S/cm for the LiFePO(4) without V addition to 1.9 x 10(-2) S/cm for the V-added compound. A possible model to facilitate the enhancement of conductivity and capacity is described with evidence supported by X-ray powder diffraction, X-ray absorption spectroscopy, and neutron powder diffraction data. © 2012, American Chemical Society.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback