Browsing by Author "Sherborne-Higgins, B"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe application of pollen radiocarbon dating and bayesian age-depth modeling for developing robust geochronological frameworks of wetland archives(Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona, 2022-04-27) Cadd, H; Sherborne-Higgins, B; Becerra-Valdivia, L; Tibby, J; Barr, C; Forbes, MS; Cohen, TJ; Tyler, JJ; Vandergoes, MJ; Francke, A; Lewis, RJ; Jacobsen, GE; Marjo, CE; Turney, CSM; Arnold, LJWetland sediments are valuable archives of environmental change but can be challenging to date. Terrestrial macrofossils are often sparse, resulting in radiocarbon (14C) dating of less desirable organic fractions. An alternative approach for capturing changes in atmospheric 14C is the use of terrestrial microfossils. We 14C date pollen microfossils from two Australian wetland sediment sequences and compare these to ages from other sediment fractions (n = 56). For the Holocene Lake Werri Berri record, pollen 14C ages are consistent with 14C ages on bulk sediment and humic acids (n = 14), whilst Stable Polycyclic Aromatic Carbon (SPAC) 14C ages (n = 4) are significantly younger. For Welsby Lagoon, pollen concentrate 14C ages (n = 21) provide a stratigraphically coherent sequence back to 50 ka BP. 14C ages from humic acid and >100 µm fractions (n = 13) are inconsistent, and often substantially younger than pollen ages. Our comparison of Bayesian age-depth models, developed in Oxcal, Bacon and Undatable, highlight the strengths and weaknesses of the different programs for straightforward and more complex chrono-stratigraphic records. All models display broad similarities but differences in modeled age-uncertainty, particularly when age constraints are sparse. Intensive dating of wetland sequences improves the identification of outliers and generation of robust age models, regardless of program used. © The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona
- ItemDifferentiating between the d13C signature from environmental conditions and SOM cycling in eastern Australian peat sediments(Australasian Quaternary Association (AQUA), 2021-07-08) Forbes, MS; Cohen, TJ; Marx, SK; Sherborne-Higgins, B; Cadd, H; Francke, A; Cendón, DI; Peterson, MA; Mooney, SD; Constantine, M; Boesl, F; Kobayashi, Y; Mazumder, DThe analysis of stable carbon isotopes is commonly used in Quaternary science to reconstruct the environmental conditions and vegetation contributions to sedimentary sequences. However, the measured d13C signature of the total organic matter (OM) pool can also reflect other complexities within depositional environments. The peats of the Thirlmere Lakes system in the southern section of the Blue Mountains World Heritage Area provides an excellent opportunity to closely scrutinise such d13C dynamics. These deposits are rich in TOC (20-40%) meaning analytical techniques such as 13C-NMR, used to characterise the OM pool, can be applied effectively. Furthermore, the identification of several peat units deposited over the last ~130 ka allows for temporal comparisons. d13C values determined for a 7 m sediment sequence from Lake Couridjah representing both the MIS 1 and MIS 5e interglacial periods vary by up to 4 to 6‰. These trends were subsequently identified in two other sediment sequences (Lake Baraba and Lake Werri Berri) proximal to Lake Couridjah. Initially we interpreted our results as reflecting a C3 dominated vegetation environment with MIS 1 wetter than MIS 5e, following the established relationship between water stress and d13C enrichment. However, spectral analysis of the OM pool indicates that d13C is driven by changing OM dynamics rather than large changes in environmental conditions. In these environments, the greater presence of carbohydrates (i.e. cellulose) in MIS 1 result in more depleted d13C values. In contrast, the MIS 5e peat is dominated by relative inert OM C fractions including charcoal and lipids (such as leaf waxes), which influences environmental proxies such as C/N. Thus, it is likely that the older MIS 5e peat is a more decomposed version of the active MIS 1 peat, and thus differentiating environmental conditions between the two using d13C alone is not particularly illuminating. To overcome this, we describe the d13C values for a coarse charcoal and high temperature hydrogen pyrolysis fractions, modern vegetation, catchment POC and DOC, and n-alkanes composition and generate catchment carbon models for both MIS 1 and MIS5e. Finally comparing the size of the OM pools of both interglacial deposits can provide useful information in estimating the carbon storage capacity of peat deposits in eastern Australia over these time scales. © The Authors.
- ItemDifferentiating between the d13C signature from environmental conditions and SOM cycling in eastern Australian peat sediments(Australasian Environmental Isotope Conference, 2022-11-14) Forbes, MS; Cohen, TJ; Marx, SK; Sherborne-Higgins, B; Cadd, H; Francke, A; Cendón, DI; Peterson, MA; Mooney, SD; Constantine, M; Boesl, F; Kobayashi, Y; Mazumder, DThe analysis of stable carbon isotopes is commonly used in Quaternary science to reconstruct the environmental conditions and vegetation contributions to sedimentary sequences. However, the measured d13C signature of the total organic matter (OM) pool can also reflect other complexities within depositional environments. The peats of the Thirlmere Lakes system in the southern section of the Blue Mountains World Heritage Area provides an excellent opportunity to closely scrutinise such d13C dynamics. These deposits are rich in TOC (20-40%) meaning analytical techniques such as 13C-NMR, used to characterise the OM pool, can be applied effectively. Furthermore, the identification of several peat units deposited over the last ~130 ka allows for temporal comparisons. d13C values determined for a 7 m sediment sequence from Lake Couridjah representing both the MIS 1 and MIS 5e interglacial periods vary by up to 4 to 6‰. These trends were subsequently identified in two other sediment sequences (Lake Baraba and Lake Werri Berri) proximal to Lake Couridjah. Initially we interpreted our results as reflecting a C3 dominated vegetation environment with MIS 1 wetter than MIS 5e, following the established relationship between water stress and d13C enrichment. However, spectral analysis of the OM pool indicates that d13C is driven by changing OM dynamics rather than large changes in environmental conditions. In these environments, the greater presence of carbohydrates (i.e. cellulose) in MIS 1 result in more depleted d13C values. In contrast, the MIS 5e peat is dominated by relative inert OM C fractions including charcoal and lipids (such as leaf waxes), which influences environmental proxies such as C/N. Thus, it is likely that the older MIS 5e peat is a more decomposed version of the active MIS 1 peat, and thus differentiating environmental conditions between the two using d13C alone is not particularly illuminating. To overcome this, we describe the d13C values for a coarse charcoal and high temperature hydrogen pyrolysis fractions, modern vegetation, catchment POC and DOC, and n-alkanes composition and generate catchment carbon models for both MIS 1 and MIS5e. Finally comparing the size of the OM pools of both interglacial deposits can provide useful information in estimating the carbon storage capacity of peat deposits in eastern Australia over these time scales.