Browsing by Author "Saccò, M"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemElucidating stygofaunal trophic web interactions via isotopic ecology(PLOS One, 2019-10-16) Saccò, M; Blyth, AJ; Humphreys, WF; Kuhl, A; Mazumder, D; Smith, C; Grice, KSubterranean ecosystems host highly adapted aquatic invertebrate biota which play a key role in sustaining groundwater ecological functioning and hydrological dynamics. However, functional biodiversity studies in groundwater environments, the main source of unfrozen freshwater on Earth, are scarce, probably due to the cryptic nature of the systems. To address this, we investigate groundwater trophic ecology via stable isotope analysis, employing δ13C and δ15N in bulk tissues, and amino acids. Specimens were collected from a shallow calcrete aquifer in the arid Yilgarn region of Western Australia: a well-known hot-spot for stygofaunal biodiversity. Sampling campaigns were carried out during dry (low rainfall: LR) and the wet (high rainfall: HR) periods. δ13C values indicate that most of the stygofauna shifted towards more 13C-depleted carbon sources under HR, suggesting a preference for fresher organic matter. Conversion of δ15N values in glutamic acid and phenylalanine to a trophic index showed broadly stable trophic levels with organisms clustering as low-level secondary consumers. However, mixing models indicate that HR conditions trigger changes in dietary preferences, with increasing predation of amphipods by beetle larvae. Overall, stygofauna showed a tendency towards opportunistic and omnivorous habits—typical of an ecologically tolerant community—shaped by bottom-up controls linked with changes in carbon flows. This study provides baseline biochemical and ecological data for stygofaunal trophic interactions in calcretes. Further studies on the carbon inputs and taxa-specific physiology will help refine the interpretation of the energy flows shaping biodiversity in groundwaters. This will aid understanding of groundwater ecosystem functioning and allow modelling of the impact of future climate change factors such as aridification. Subterranean ecosystems host highly adapted aquatic invertebrate biota which play a key role in sustaining groundwater ecological functioning and hydrological dynamics. However, functional biodiversity studies in groundwater environments, the main source of unfrozen freshwater on Earth, are scarce, probably due to the cryptic nature of the systems. To address this, we investigate groundwater trophic ecology via stable isotope analysis, employing δ13C and δ15N in bulk tissues, and amino acids. Specimens were collected from a shallow calcrete aquifer in the arid Yilgarn region of Western Australia: a well-known hot-spot for stygofaunal biodiversity. Sampling campaigns were carried out during dry (low rainfall: LR) and the wet (high rainfall: HR) periods. δ13C values indicate that most of the stygofauna shifted towards more 13C-depleted carbon sources under HR, suggesting a preference for fresher organic matter. Conversion of δ15N values in glutamic acid and phenylalanine to a trophic index showed broadly stable trophic levels with organisms clustering as low-level secondary consumers. However, mixing models indicate that HR conditions trigger changes in dietary preferences, with increasing predation of amphipods by beetle larvae. Overall, stygofauna showed a tendency towards opportunistic and omnivorous habits—typical of an ecologically tolerant community—shaped by bottom-up controls linked with changes in carbon flows. This study provides baseline biochemical and ecological data for stygofaunal trophic interactions in calcretes. Further studies on the carbon inputs and taxa-specific physiology will help refine the interpretation of the energy flows shaping biodiversity in groundwaters. This will aid understanding of groundwater ecosystem functioning and allow modelling of the impact of future climate change factors such as aridification. © 2019 Saccò et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- ItemNew light in the dark - a proposed multidisciplinary framework for studying functional ecology of groundwater fauna(Elsevier, 2019-04-20) Saccò, M; Blyth, AJ; Bateman, PW; Hua, Q; Mazumder, D; White, NE; Humphreys, WF; Laini, A; Griebler, C; Grice, KGroundwaters provide the vast majority of unfrozen freshwater resources on the planet, but our knowledge of subsurface ecosystems is surprisingly limited. Stygofauna, or stygobionts -subterranean obligate aquatic animals - provide ecosystem services such as grazing biofilms and maintaining water quality, but we know little about how their ecosystems function. The cryptic nature of groundwaters, together with the high degree of local endemism and stygofaunal site-specific adaptations, represent major obstacles for the field. To overcome these challenges, and integrate biodiversity and ecosystem function, requires a holistic design drawing on classical ecology, taxonomy, molecular ecology and geochemistry. This study presents an approach based on the integration of existing concepts in groundwater ecology with three more novel scientific techniques: compound specific stable isotope analysis (CSIA) of amino acids, radiocarbon analysis (14C) and DNA analyses of environmental samples, stygofauna and gut contents. The combination of these techniques allows elucidation of aspects of ecosystem function that are often obscured in small invertebrates and cryptic systems. Carbon (δ13C) and nitrogen (δ15N) CSIA provides a linkage between biogeochemical patterns and ecological dynamics. It allows the identification of stygofaunal food web structures and energy flows based on the metabolic pathway of specific amino groups. Concurrently, 14C provides complementary data on the carbon recycling and incorporation within the stygobiotic trophic webs. Changes in groundwater environmental conditions (e.g. aquifer recharge), and subsequent community adaptations, can be pinpointed via the measurement of the radiocarbon fingerprint of water, sediment and specimens. DNA analyses are a rapidly expanding approach in ecology. eDNA is mainly employed as a biomonitoring tool, while metabarcoding of individuals and/or gut contents provides insight into diet regimes. In all cases, the application of the approaches in combination provides more powerful data than any one alone. By combining quantitative (CSIA and 14C) and qualitative (eDNA and DNA metabarcoding) approaches via Bayesian Mixing Models (BMM), linkages can be made between community composition, energy and nutrient sources in the system, and trophic function. This suggested multidisciplinary design will contribute to a more thorough comprehension of the biogeochemical and ecological patterns within these undervalued but essential ecosystems. © 2019 Elsevier B.V.
- ItemRainfall as a trigger of ecological cascade effects in an Australian groundwater ecosystem(Springer Nature Limited, 2021-02-12) Saccò, M; Blyth, AJ; Humphreys, WF; Cooper, SJB; White, NE; Mousavi-Derazmahalleh, M; Hua, Q; Mazumder, D; Smith, C; Griebler, C; Grice, KGroundwaters host vital resources playing a key role in the near future. Subterranean fauna and microbes are crucial in regulating organic cycles in environments characterized by low energy and scarce carbon availability. However, our knowledge about the functioning of groundwater ecosystems is limited, despite being increasingly exposed to anthropic impacts and climate change-related processes. In this work we apply novel biochemical and genetic techniques to investigate the ecological dynamics of an Australian calcrete under two contrasting rainfall periods (LR—low rainfall and HR—high rainfall). Our results indicate that the microbial gut community of copepods and amphipods experienced a shift in taxonomic diversity and predicted organic functional metabolic pathways during HR. The HR regime triggered a cascade effect driven by microbes (OM processors) and exploited by copepods and amphipods (primary and secondary consumers), which was finally transferred to the aquatic beetles (top predators). Our findings highlight that rainfall triggers ecological shifts towards more deterministic dynamics, revealing a complex web of interactions in seemingly simple environmental settings. Here we show how a combined isotopic-molecular approach can untangle the mechanisms shaping a calcrete community. This design will help manage and preserve one of the most vital but underrated ecosystems worldwide. © 2021 The Authors Open Access This article is licensed under a Creative Commons Attribution 4.0 International Licence.
- ItemRefining trophic dynamics through multi-factor Bayesian mixing models: a case study of subterranean beetles(John Wiley & Sons, Inc, 2020-07-20) Saccò, M; Blyth, AJ; Humphreys, WF; Cooper, SJB; Austin, AD; Hyde, J; Mazumder, D; Hua, Q; White, NE; Grice, KFood web dynamics are vital in shaping the functional ecology of ecosystems. However, trophic ecology is still in its infancy in groundwater ecosystems due to the cryptic nature of these environments. To unravel trophic interactions between subterranean biota, we applied an interdisciplinary Bayesian mixing model design (multi-factor BMM) based on the integration of faunal C and N bulk tissue stable isotope data (δ13C and δ15N) with radiocarbon data (Δ14C), and prior information from metagenomic analyses. We further compared outcomes from multi-factor BMM with a conventional isotope double proxy mixing model (SIA BMM), triple proxy (δ13C, δ15N, and Δ14C, multi-proxy BMM), and double proxy combined with DNA prior information (SIA + DNA BMM) designs. Three species of subterranean beetles (Paroster macrosturtensis, Paroster mesosturtensis, and Paroster microsturtensis) and their main prey items Chiltoniidae amphipods (AM1: Scutachiltonia axfordi and AM2: Yilgarniella sturtensis), cyclopoids and harpacticoids from a calcrete in Western Australia were targeted. Diet estimations from stable isotope only models (SIA BMM) indicated homogeneous patterns with modest preferences for amphipods as prey items. Multi-proxy BMM suggested increased—and species-specific—predatory pressures on amphipods coupled with high rates of scavenging/predation on sister species. SIA + DNA BMM showed marked preferences for amphipods AM1 and AM2, and reduced interspecific scavenging/predation on Paroster species. Multi-factorial BMM revealed the most precise estimations (lower overall SD and very marginal beetles' interspecific interactions), indicating consistent preferences for amphipods AM1 in all the beetles' diets. Incorporation of genetic priors allowed crucial refining of the feeding preferences, while integration of more expensive radiocarbon data as a third proxy (when combined with genetic data) produced more precise outcomes but close dietary reconstruction to that from SIA + DNA BMM. Further multidisciplinary modeling from other groundwater environments will help elucidate the potential behind these designs and bring light to the feeding ecology of one the most vital ecosystems worldwide. © 2020 The Authors, published by John Wiley & Sons Ltd.
- ItemSalt to conserve: a review on the ecology and preservation of hypersaline ecosystems(John Wiley & Sons, Inc, 2021-07-19) Saccò, M; White, NE; Harrod, C; Salazar, G; Aguilar, P; Cubillos, CF; Meredith, KT; Baxter, BK; Oren, A; Anufriieva, E; Shadrin, N; Marambio-Alfaro, Y; Bravo-Naranjo, V; Allentoft, MEWhen it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the ‘exotic siblings’ within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with ‘a grain of salt’. © 2021 Cambridge Philosophical Society
- ItemStygofaunal community trends along varied rainfall conditions: deciphering ecological niche dynamics of a shallow calcrete in Western Australia(John Wiley & Sons, Inc, 2019-09-16) Saccò, M; Blyth, AJ; Humphreys, WF; Karasiewicz, S; Meredith, KT; Laini, A; Cooper, SJB; Bateman, PW; Grice, KGroundwaters host highly adapted fauna, known as stygofauna, which play a key role in maintaining the functional integrity of subterranean ecosystems. Stygofaunal niche studies provide insights into the ecological dynamics shaping the delicate balance between the hydrological conditions and community diversity patterns. This work aims to unravel the ecological trends of a calcrete stygofaunal community, with special focus on niche dynamics through the Outlying Mean Index analysis (OMI) and additional calculation of Within Outlying Mean Indexes (WitOMI), under three rainfall regimes. Temperature and pH changed significantly among different rainfall conditions (P < .001), and together with salinity were the most influential drivers in shaping stygofaunal assemblages. These environmental conditions, linked with nutrient fluctuations in the groundwater, constrained changes in niche occupation for water mites, two species of beetles and juvenile amphipods (OMI analysis, P < .05). The WitOMI analysis revealed differential subniche breadths linked with taxa-specific adaptations after different rainfall conditions. Our results indicate that stygofaunal niches are closely linked to the hydrodynamic conditions influenced by different rainfall regimes. Further long-term investigations, incorporating broader ecological perspectives, will help to understand the impacts associated with climate change and anthropogenic pressures on one of the most threatened ecosystems in the world. © 2019 John Wiley & Sons, Ltd.
- ItemTracking down carbon inputs underground from an arid zone Australian calcrete(Public Library of Science (PLOS), 2020-08-28) Saccò, M; Blyth, AJ; Humphreys, WF; Middleton, JA; White, NE; Campbell, M; Mousavi-Derazmahalleh, M; Laini, A; Hua, Q; Meredith, KT; Cooper, SJB; Griebler, C; Allard, S; Grierson, P; Grice, KFreshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways—dominated by those related to aromatic compound metabolisms—during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota. © 2020 Saccò et al
- ItemWhat’s going on down (under) there? Unravelling biochemical flows under differential rainfall periods in a Western Australian calcrete(National Centre for Groundwater Research And Training, & Australian Chapter International Association Of Hydrogeologists, 2019-11-24) Saccò, M; Blyth, AJ; Meredith, KT; Smith, C; Hua, Q; Mazumder, D; Humphreys, WF; White, N; Grice, KGroundwater is a vital resource. It contains 97% of unfrozen water on the planet, playing a key role in present and future water needs for humanity. However, our knowledge about the ecosystem functioning is very poor, and groundwater environments are increasingly exposed to anthropic impacts and climate change-related processes. Novel biochemical (e.g. isotopic ecology) and genetic (e.g. eDNA) techniques, widely employed in fresh surface water studies, have the potential to unravel the complex dynamics shaping subsurface ecosystems, providing new insights to the small but quickly growing field of groundwater ecology. Stygofauna, together with microbes, are crucial actors in shaping and maintaining the organic matter (OM) cycles in environments characterized by low energy and scarce carbon availability. In order to understand groundwater ecological patterns, we investigate calcrete stygofaunal shifts linked with contrasting rainfall periods (low rainfall (LR), dry season; high rainfall (HR), wet season), through an interdisciplinary design composed of hydrology, isotopic ecology and genetics. Our results indicate that the inflow of rainfall under HR is responsible for increased nutrient concentrations in the system and dissolved organic carbon (DOC) pulses from the surface. Both the meiofaunal and stygofaunal communities’ benefit from these organic inflows, with gamma and proteobacteria the biota that fuels carbon and nutrients to the higher levels of the trophic web. The HR regime - and its subsequent terrestrial carbon incorporation - triggers a cascade effect driven by microbes (OM processors) and amphipods (biofilm grazers), which is finally transferred to the aquatic beetles (top predators). Overall, and in line with other work in the same research area, the inflow of rainfall triggered shifts towards more deterministic dynamics, revealing a complex web of interactions in a seemingly simple environmental setting. This study provides a preliminary untangling of the biochemical flows driven by rainfall in a calcrete aquifer. More investigations involving multidisciplinary approaches on other subsurface ecosystems, i.e. alluvial aquifers, will help to understand present ecological patterns and predict future scenarios in groundwaters. © The Authors