Browsing by Author "Robertson, H"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCompetitive specific ion effects: a neutron reflectometry study of thermoresponsive(Australian Institute of Nuclear Science and Engineering (AINSE), 2020-11-11) Robertson, H; Johnson, EC; Gresham, IJ; Prescott, SW; Nelson, A; Wanless, EJ; Webber, GBSpecific ion effects are phenomena that depend on the identity of ions present in a system, and not merely their valence or concentration. For example, the Hofmeister series orders ions on their ability to either stabilise (salting-in ions) or destabilise (salting-out ions) proteins and is vital in biochemistry.[1] In recent years, polymer brushes, which consist of end-tethered polymer chains to a substrate, have been used as exemplar systems to investigate specific ion effects. [2] The effective solvent quality influences the conformation of these brushes (collapsed or expanded), which is directly linked to application properties (e.g. switchable adhesion and self-cleaning). We have performed a significant body of work on brush conformation in single salt electrolytes.[2-4] However, our understanding of the influence that mixed electrolytes have on the behaviour of polymer brushes is currently limited, which is necessary for real-world applications. Here, we present the behaviour of poly(ethylene glycol) methyl ether methacrylate (POEGMA) brushes in a variety of both pure and mixed electrolytes, as studied with neutron reflectometry. Reflectometry allows for the extraction of volume fraction profiles, which can provide detailed information regarding the influence of ion specificity on polymer brush conformation. Consistent results were also obtained from other techniques, such as ellipsometry, which is used to track overall changes in brush thickness. In the presence of electrolytes composed of ions from the same end of the Hofmeister series (salting-in and salting-in or salting-out and salting-out), a non-monotonic concentration-dependent influence of the two ions was observed. The specific ion effects imparted by two salting-in ions were dependent on the influence of the ions with the polymer chains. In contrast, the impact of two salting-out ions was dependent on the available solvent molecules. In the presence of electrolytes composed of ions from opposite ends of the Hofmeister series (salting-in and salting-out), ion behaviour was observed to be temperature-dependent.[3] Much can be gained by improving our knowledge of ion specificity and understanding the subtle structural changes of a brush are essential in order to unravel the dominant drivers behind specific ion effects.
- ItemCompetitive specific ion effects: a neutron reflectometry study of thermoresponsive polymer brushes in mixed electrolytes(Elsevier, 2020-10-26) Robertson, H; Johnson, EC; Gresham, IJ; Prescott, SW; Nelson, A; Wanless, EJ; Webber, GBGrafted poly(ethylene glycol) methyl ether methacrylate (POEGMA) copolymer brushes change conformation in response to temperature ('thermoresponse'). In the presence of different ions the thermoresponse of these coatings is dramatically altered. These effects are complex and poorly understood with no all-inclusive predictive theory of specific ion effects. As natural environments are composed of mixed electrolytes, it is imperative we understand the interplay of different ions for future applications. We hypothesise anion mixtures from the same end of the Hofmeister series (same-type anions) will exhibit non-additive and competitive behaviour. © 2023 Elsevier B.V.
- ItemMaximum flux: using time-resolved neutron reflectometry to improve our understanding of surface-initiated polymerisation(Australian Nuclear Science and Technology Organisation, 2021-11-24) Gresham, IJ; Prescott, SW; Nelson, A; Robertson, H; Johnson, EC; Webber, GB; Wanless, EJPolymer brushes are dense arrays of surface-tethered polymers that possess desirable qualities, such as lubricity and fouling resistance, provided that their structure and chemistry are correctly tuned [1]. Surface-initiated polymerisation (SIP) is the primary method for synthesising these brushes with the physicochemical properties required to imbue surfaces with the aforementioned qualities. However, previous work [2,3] indicates that polymers synthesised by SIP deviate from polymers produced via solution polymerisation, likely due to the proximity of initiators in the tethered case. This deviation is not well understood, which impedes the structural characterisation of the resulting brushes. As structure dictates behaviour [1], understanding the nature of the brushes produced by SIP facilitates the rational design of functional brush coatings. Here we present a study of brushes synthesised via SIP of the well-characterised polymer poly(N-isopropyl acrylamide) (PNIPAM) using time-resolved neutron reflectometry (NR). First, we demonstrate that we can control the polymer initiator density and examine the relationship between molecular weight and grafting density. We then observe a series of SIP reactions from surfaces with different initiator densities in situ using time-resolved NR. To our knowledge, this is the first time that the structure of a growing polymer brush has been directly observed. The results confirm that a high initiator density leads to poor control early in the reaction, and explain several phenomena observed by previous NR experiments [4,5]. This experiment paves the way for further kinetic experiments on Platypus and will be of interest to anyone interested in the dynamic assembly of interfaces over timescales of 10 minutes to several hours. © 2021 The Authors