Browsing by Author "Pomjakushin, V"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemChemical pressure effects on crystal and magnetic structures of bilayer manganites PrA2Mn2O7 (A = Sr or Ca)(AIP Publishing, 2016-06-03) Deng, G; Sheptyakov, D; Pomjakushin, V; Medarde, M; Pomjakushina, E; Conder, K; Kenzelmann, M; Studer, AJ; Gardner, JS; McIntyre, GJThe crystal and magnetic structures of the bilayer manganites PrSr2Mn2O7 (PSMO) and PrCa2Mn2O7 (PCMO) have been studied by neutron powder diffraction. It was found that PSMO crystallizes in space group I4/mmm, while PCMO adopts space group Cmc21 at room temperature. The difference in the structure arises from chemical pressure induced by the Ca substitution for Sr on the A sites, which causes different Jahn-Teller distortions. In PSMO, the MnO6 octahedra suffer a small elongated distortion, while those in PCMO adopt strong compressed distortion along the axial direction. In addition, the octahedra in PCMO show a+b0c0 rotation and a0b+c+ tilting in the Glazer notation in comparison to PSMO. As a result, these two compounds adopt very different magnetic structures: The magnetic structure of PSMO is an A-type magnetic structure (Im'm'm) with propagation vector k = (0, 0, 1) and magnetic moments in the ab plane. In contrast, a C-type antiferromagnetic magnetic structure (Cm'c2′1) with the multiple propagation vectors (k = (0, 12, 12) and (0, 12, 0)) and magnetic moments mainly along the b axis is found in PCMO. The critical exponent of the magnetic phase transition is around 0.345 for PSMO and 0.235 for PCMO, indicating 3D and 2D XY transitions, respectively. The strong Jahn-Teller distortion induced by the chemical pressure is believed to suppress the double exchange and favour super-exchange in PCMO, leading to the dramatic difference in the magnetic structure. © 2016 Author(s). Published by AIP Publishing.
- ItemCoexistence of long-range magnetic ordering and singlet ground state in the spin-ladder superconductor SrCa13Cu24O41(American Physical Society, 2013-11-26) Deng, GC; Kenzelmann, M; Danilkin, SA; Studer, AJ; Pomjakushin, V; Imperia, P; Pomjakushina, E; Conder, KA long-range magnetic order was discovered in the quasi-one-dimensional spin-ladder compound SrCa13Cu24O41 by susceptibility, specific heat, and neutron diffraction experiments. The temperature dependence of the magnetic Bragg peak intensity could be well fitted to the power law with a transition temperature TN = 4.23 K and a critical exponent β = 0.28, indicating a three-dimensional phase transition for a low-dimensional magnet. A computer program was coded and found two possible magnetic structure models fitting best with all the observed magnetic peaks. These models suggest the spin-ladder sublattice is magnetically ordered with Cu moments aligning along the a axis. The spin interactions are primarily antiferromagnetic along rungs and legs, while there are ferromagnetic clusters along legs. Surprisingly, the singlet-triplet spin-gap excitation is observable above and below TN, indicating a coexistence of the spin-singlet ground state and long-range magnetic ordering state in this compound. © 2013 American Physical Society.
- ItemDoping and temperature dependence of Mn 3d states in A-site ordered manganites(American Physical Society, 2010-12-06) García-Fernández, M; Staub, U; Bodenthin, Y; Pomjakushin, V; Mirone, A; Fernández-Rodríguez, J; Scagnoli, V; Mulders, AM; Lawrence, SM; Pomjakushina, EWe present a systematic study of the electronic structure in A-site ordered manganites as function of doping and temperature. The energy dependencies observed with soft x-ray resonant diffraction (SXRD) at the Mn L2,3 edges are compared with structural investigations using neutron powder diffraction as well as with cluster calculations. The crystal structures obtained with neutron powder diffraction reflect the various orbital and charge ordered phases, and show an increase in the Mn-O-Mn bond angle as function of doping and temperature. Cluster calculations show that the observed spectral changes in SXRD as a function of doping are more pronounced than expected from an increase in bandwitdh due to the increase in Mn-O-Mn bond angle and are best described by holes that are distributed at the neighboring oxygen ions. These holes are not directly added to the Mn 3d shell but centered at the Mn site. In contrast, the spectral changes in SXRD as function of temperature are best described by an increase of magnetic correlations. This demonstrates the strong correlations between orbitals and magnetic moments of the 3d states. © 2010, American Physical Society
- ItemStructural evolution of one-dimensional spin-ladder compounds Sr14−xCaxCu24O41 with Ca doping and related evidence of hole redistribution(American Physical Society, 2011-10-17) Deng, G; Pomjakushin, V; Petříček, V; Pomjakushina, E; Kenzelmann, M; Conder, KIncommensurate crystal structures of spin-ladder series Sr(14-x)Ca(x)Cu(24)O(41) (x = 3, 7, 11, and 12.2) were characterized by powder neutron scattering method and refined using the superspace group Xmmm(00 gamma)ss0 [ equivalent to superspace group Fmmm(0, 0, 1 + gamma)ss0; X stands for nonstandard centering (0, 0, 0, 0), (0, 1/2, 1/2, 1/2), (1/2, 1/2, 0, 0), (1/2, 0, 1/2, 1/2)] with a modulated structure model. The Ca doping effects on the lattice parameters, atomic displacement, Cu-O distances, Cu-O bond angles, and Cu bond valence sum were characterized. The refined results show that the CuO(4) planar units in both chain and ladder sublattices become closer to square shape with an increase of Ca doping. The Cu bond valence sum calculation provided new evidence for the charge transfer from the chains to ladders (approximately 0.16 holes per Cu from x = 0 to 12.2). The charge transfer was attributed to two different mechanisms: (a) the Cu-O bond distance shrinkage on the ladder and (b) increase of the interaction between two sublattices, resulting in Cu-O bonding between the chains and ladders. The low-temperature structural refinement resulted in the similar conclusion with a slight charge backflow to the chains.© 2011, American Physical Society