Browsing by Author "Pollard, T"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemClumped isotope analysis of Central Australian carbonates: a potential palaeoclimate proxy for Australia’s arid interior(American Geophysical Union (AGU), 2022-12-13) Nixon, F; Tyler, JJ; Priestley, SC; Cohen, TJ; Klaebe, RM; Crossey, LJ; Karlstrom, KE; Polak, VJ; Asmerom, Y; Love, AJ; Hua, Q; Wade, B; Pollard, T; Drysdale, RN; Hall, PAQuantitative records of past temperature variability in arid environments are crucial for validating climate models and their ability to capture the full range of the Earth’s climatic regions. However, arid zone temperature reconstructions are rare, particularly in the Southern Hemisphere, including Australia. The clumped isotope thermometer provides a novel approach to potentially address this demand by allowing the estimation of carbonate precipitation temperature independent of environmental water isotopic composition. Two types of carbonate materials offer potential for clumped isotope temperature reconstructions in arid central Australia: fossil mollusk shells deposited within the shoreline sediments of now dry lakes, and tufa deposits formed in mound springs fed by continuous discharge of Great Artesian Basin groundwater. Here we present preliminary clumped isotope analyses from tufa and shell samples from central Australia. We also discuss the use of micro-XRF scanning and XRD to evaluate sample suitability for both clumped isotope analysis and U-series dating. Air temperatures inferred from tufa Δ47 measurements suggest mean annual air temperatures (MAAT) ~5°C cooler than present between 12-9 ka, which supports palaeoclimate model based estimates for central Australia. Average air temperatures inferred from mollusk shells indicate MAAT at least 15°C cooler than present during 70-35 ka, suggesting a larger MAAT reduction than previously estimated. Carbonate δ18O appears to have been largely driven by changes in environmental water δ18O for lakes but not for mound springs, reflecting different hydrological controls on the two water sources. Agreement between temperatures and palaeoclimate models suggest clumped isotope analysis may function as a valuable quantitative palaeotemperature proxy in central Australia. Analysis of additional tufa and shell samples along with an investigation of the genesis of different tufa is ongoing.
- ItemClumped isotope analysis of central Australian carbonates: a potential palaeoclimate proxy for Australia’s arid interior(Australasian Quaternary Association Inc., 2022-12-06) Nixon, F; Tyler, JJ; Priestley, SC; Cohen, TJ; Klaebe, RM; Crossey, LJ; Karlstrom, KE; Polyak, VJ; Asmerom, Y; Love, A; Hua, Q; Wade, B; Pollard, T; Drysdale, RN; Hall, PAQuantitative records of past temperature variability in arid environments are crucial for validating climate models and their ability to capture the full range of the Earth’s climatic regions. However, arid zone temperature reconstructions are rare, particularly in the Southern Hemisphere, including Australia. The clumped isotope thermometer provides a novel approach to potentially address this demand by allowing the estimation of carbonate precipitation temperature independent of environmental water isotopic composition. Two types of carbonate materials offer potential for clumped isotope temperature reconstructions in arid central Australia: fossil mollusk shells deposited within the shoreline sediments of now dry lakes, and tufa deposits formed in mound springs fed by continuous discharge of Great Artesian Basin groundwater. Here we present preliminary clumped isotope analyses from tufa and shell samples from central Australia. We also discuss the use of micro-XRF scanning and XRD to evaluate sample suitability for both clumped isotope analysis and U-series dating. Air temperatures inferred from tufa Δ47 measurements suggest mean annual air temperatures (MAAT) ~5°C cooler than present between 12-9 ka, which supports palaeoclimate model based estimates for central Australia. Average air temperatures inferred from mollusk shells indicate MAAT at least 15°C cooler than present during 70-35 ka, suggesting a larger MAAT reduction than previously estimated. Carbonate δ18O appears to have been largely driven by changes in environmental water δ18O for lakes but not for mound springs, reflecting different hydrological controls on the two water sources. Agreement between temperatures and palaeoclimate models suggest clumped isotope analysis may function as a valuable quantitative palaeotemperature proxy in central Australia. Analysis of additional tufa and shell samples along with an investigation of the genesis of different tufa is ongoing.
- ItemClumped isotope analysis of central Australian carbonates: a potential palaeoclimate proxy for Australia’s arid interior(Australasian Quaternary Association Inc., 2022-12-06) Nixon, F; Tyler, JJ; Priestley, SC; Cohen, TJ; Klaebe, RM; Crossey, L; Karlstrom, KE; Polyak, V; Asmerom, Y; Love, AJ; Hua, Q; Wade, B; Pollard, T; Drysdale, R; Hall, PAQuantitative records of past temperature variability in arid environments are crucial for validating climate models and their ability to capture the full range of the Earth’s climatic regions. However, arid zone temperature reconstructions are rare, particularly in the Southern Hemisphere, including Australia. The clumped isotope thermometer provides a novel approach to potentially address this demand by allowing the estimation of carbonate precipitation temperature independent of environmental water isotopic composition. Two types of carbonate materials offer potential for clumped isotope temperature reconstructions in arid central Australia: fossil mollusk shells deposited within the shoreline sediments of now dry lakes, and tufa deposits formed in mound springs fed by continuous discharge of Great Artesian Basin groundwater. Here we present preliminary clumped isotope analyses from tufa and shell samples from central Australia. We also discuss the use of micro-XRF scanning and XRD to evaluate sample suitability for both clumped isotope analysis and U-series dating. Air temperatures inferred from tufa Δ47 measurements suggest mean annual air temperatures (MAAT) ~5°C cooler than present between 12-9 ka, which supports palaeoclimate model based estimates for central Australia. Average air temperatures inferred from mollusk shells indicate MAAT at least 15°C cooler than present during 70-35 ka, suggesting a larger MAAT reduction than previously estimated. Carbonate δ18O appears to have been largely driven by changes in environmental water δ18O for lakes but not for mound springs, reflecting different hydrological controls on the two water sources. Agreement between temperatures and palaeoclimate models suggest clumped isotope analysis may function as a valuable quantitative palaeotemperature proxy in central Australia. Analysis of additional tufa and shell samples along with an investigation of the genesis of different tufa is ongoing.
- ItemRadiometrically dated speleothem records of Terminations IV and V and linkages to the North Atlantic(International Union for Quaternary Research (INQUA), 2019-07-28) Pollard, T; Drysdale, RN; Woodhead, JD; Edwards, RL; Hellstrom, JC; Cheng, H; Dux, F; Daëron, M; Li, XL; Wong, HKY; Couchoud, I; Regattieri, E; Zanchetta, G; Isola, IPaleoclimate archives tied to accurate and precise chronologies are crucial for developing a dynamical understanding of the causes and nature of Quaternary glacial terminations [1]. While numerous well-dated archives provide good chronological control through Terminations I and II, there is presently a lack of well-dated records spanning earlier terminations. A notable exception to this is a suite of remarkably well-dated Chinese speleothems that have been used to date the commencement of each termination over the past 640 kyr [2,3]. This has been achieved by correlating weak Asian Monsoon anomalies as captured by speleothem oxygen isotope signals with terminal Heinrich events in the North Atlantic. While this approach is well-suited to testing orbital hypothesis by comparing the timing of termination commencement with insolation metrics, it only provides precise age control at the beginning of each termination. This precludes assessment of the progression of climatic changes over the full course of the termination, and the timing at which full interglacial conditions are reached. Here we present a composite speleothem record spanning glacial terminations IV and V from the Antro del Corchia cave system located on the western coast of central Italy. This record is anchored to a uranium-thorium based chronology and contains numerous proxies representing both local and regional climate, including Δ47-based temperature data derived from a pool carbonate formed under very slow degassing conditions. By taking advantage of established links between speleothem proxies from this cave site and marine proxies from the North Atlantic, we fix the marine sediment data to a radiometric age scale. This allows us to constrain the timing of ocean circulation and SST changes occurring in the North Atlantic throughout the duration of Terminations IV and V, and compare these with terrestrial temperatures in central Italy. © The Authors.