Browsing by Author "Pettigrove, VJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDietary uptake and depuration kinetics of perfluorooctane sulfonate, perfluorooctanoic acid, and hexafluoropropylene oxide dimer acid (GenX) in a benthic fish(John Wiley & Sons, Inc, 2019-11-21) Hassell, KL; Coggan, TL; Cresswell, T; Kolobaric, A; Berry, K; Crosbie, ND; Blackbeard, J; Pettigrove, VJ; Clarke, BOPer- and poly-fluoroalkyl substances (PFAS) are ubiquitously distributed throughout aquatic environments and can bioaccumulate in organisms. We examined dietary uptake and depuration of a mixture of 3 PFAS: perfluorooctanoic acid (PFOA; C8HF15O2), perfluorooctane sulfonate (PFOS; C8HF17SO3), and hexafluoropropylene oxide dimer acid (HPFO-DA; C6HF11O3; trade name GenX). Benthic fish (blue spot gobies, Pseudogobius sp.) were fed contaminated food (nominal dose 500 ng g–1) daily for a 21-d uptake period, followed by a 42-d depuration period. The compounds PFOA, linear-PFOS (linear PFOS), and total PFOS (sum of linear and branched PFOS) were detected in freeze-dried fish, whereas GenX was not, indicating either a lack of uptake or rapid elimination (<24 h). Depuration rates (d–1) were 0.150 (PFOA), 0.045 (linear-PFOS), and 0.042 (linear+branched-PFOS) with corresponding biological half-lives of 5.9, 15, and 16 d, respectively. The PFOS isomers were eliminated differently, resulting in enrichment of linear-PFOS (70–90%) throughout the depuration period. The present study is the first reported study of GenX dietary bioaccumulation potential in fish, and the first dietary study to investigate uptake and depuration of multiple PFASs simultaneously, allowing us to determine that whereas PFOA and PFOS accumulated as expected, GenX, administered in the same way, did not appear to bioaccumulate. © 2019 SETAC
- ItemTowards sustainable environmental quality: priority research questions for the Australasian region of Oceania(John Wiley & Sons, Inc, 2019-07-05) Gaw, S; Harford, A; Pettigrove, VJ; Sevicke-Jones, G; Manning, T; Ataria, J; Cresswell, T; Dafforn, KA; Leusch, FDL; Moggridge, B; Cameron, M; Chapman, J; Coates, G; Colville, A; Death, C; Hageman, K; Hassell, KL; Hoak, M; Gadd, JB; Jolley, DF; Karami, A; Kotzakoulakis, K; Lim, R; McRae, N; Metzeling, L; Mooney, T; Myers, J; Pearson, A; Saaristo, M; Sharley, D; Stuthe, J; Sutherland, O; Thomas, O; Tremblay, L; Wood, W; Boxall, ABA; Rudd, MA; Brooks, BWEnvironmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g., the food–energy–water nexus, demographic transitions to cities) and climate change. Here we report priority research questions from the Global Horizon Scanning Project, which aimed to identify, prioritize, and advance environmental quality research needs from an Australasian perspective, within a global context. We employed a transparent and inclusive process of soliciting key questions from Australasian members of the Society of Environmental Toxicology and Chemistry. Following submission of 78 questions, 20 priority research questions were identified during an expert workshop in Nelson, New Zealand. These research questions covered a range of issues of global relevance, including research needed to more closely integrate ecotoxicology and ecology for the protection of ecosystems, increase flexibility for prioritizing chemical substances currently in commerce, understand the impacts of complex mixtures and multiple stressors, and define environmental quality and ecosystem integrity of temporary waters. Some questions have specific relevance to Australasia, particularly the uncertainties associated with using toxicity data from exotic species to protect unique indigenous species. Several related priority questions deal with the theme of how widely international ecotoxicological data and databases can be applied to regional ecosystems. Other timely questions, which focus on improving predictive chemistry and toxicology tools and techniques, will be important to answer several of the priority questions identified here. Another important question raised was how to protect local cultural and social values and maintain indigenous engagement during problem formulation and identification of ecosystem protection goals. Addressing these questions will be challenging, but doing so promises to advance environmental sustainability in Oceania and globally. © 2019 The Authors