Browsing by Author "Paddea, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe incremental contour method using asymmetric stiffness cuts(Elsevier, 2021-01-01) Achouri, A; Hosseinzadeh, F; Bouchard, PJ; Paddea, S; Muránsky, OAn incremental Contour Method (iCM) of residual stress measurement is proposed where residual stresses in the body of interest are sequentially reduced by successive contour cuts and the risk of stress re-distribution plasticity is mitigated or eliminated. The cutting-induced plasticity is known to cause significant inaccuracies when trying to measure the near-yield residual stresses using a conventional single cut contour method. The iCM procedure implements a new displacement data processing approach for the general case of sectioning at an arbitrary plane where the cut parts do not possess mirror-symmetric elastic stiffness. The basis for the new asymmetric stiffness data analysis approach is presented and the accuracy of the new method demonstrated using both numerical and experimental case studies. © 2020 The Authors. Published by Elsevier Ltd.
- ItemModern and historical engineering components investigated by neutron diffractionon ENGIN-X(Japan Society of Mechanical Engineers, 2012-06-29) Paradowska, AM; Tremsin, A; Kelleher, JF; Zhang, SY; Paddea, S; Burca, G; James, JA; Ahmed, R; Faisal, NH; Festa, G; Andreani, C; Civita, F; Bouchard, PJ; Krockelman, W; Fitzpatrick, ME; Grazzi, FThe ENGIN-X beamline is mainly used to determine residual strains/stresses deep within the interior of bulk engineering components. It is mainly used by scientists and engineers for the development of modern engineering processes and structural integrity investigations. ENGIN-X diffraction and transmission mode can be a very useful tool to measure strain, phase transitions, texture and material composition in spatial resolution in historical or archaeological artifacts and modern materials. The complexity of the shapes and sizes of the samples measured on ENGIN-X varies significantly between experiments, and this required the development of better planning, simulation and control software, SScanSS. In this paper an overview of recent developments in strain scanning on ENGIN-X and a highlight of current scientific research are presented. © 2012 The Japan Society of Mechanical Engineers