Browsing by Author "Ozbilgen, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMicro-Computed Tomography (MCT) beamline at ANSTO/Australian Synchrotron: a progress report(Australian Nuclear Science and Technology Organisation, 2021-11-24) Stevenson, AW; Arhatari, BD; Banerjee, R; Bosworth, R; Fiala, T; Graham, B; Griffin, E; Lee, J; McKinlay, J; Michalczyk, A; Millen, C; Oelofse, S; Ozbilgen, S; Rakman, A; Sarris, N; Tabar, E; Tissa, P; Walsh, A; Wirthensohn, J; Harvey, EThe Micro-Computed Tomography (MCT) beamline is one of the first new beamlines to be constructed at the Australian Synchrotron as part of the BRIGHT program. MCT will complement the existing X-ray imaging/tomography capability provided by the Imaging and Medical Beamline (IMBL), and will target applications requiring higher (sub-micron) spatial resolution and involving smaller samples. MCT will be a bendingmagnet beamline, operating in the 8 to 40 keV range, based on a double-multilayer monochromator. Filtered white and pink beams will also be available, the latter utilising a single-(vertical)bounce mirror. MCT will benefit from X-ray phase-contrast modalities (such as propagation-based, grating-based and speckle) in addition to conventional absorption contrast, and be equipped with a robotic stage for rapid sample exchange. A higher-resolution CT configuration based on the use of a Fresnel zone plate system will also be available. A number of sample environmental stages, such as for high temperature and the application of loads, are planned in collaboration with certain groups in the user community. Anticipated application areas for non-destructive 3D sample characterisation include biomedical/ health science, food, materials science, and palaeontology. This presentation will provide an update on the progress of the MCT project, including the procurement of three state-of-the-art X-ray detector systems, and the significant scientific-computing effort required to meet the demands of this high-performance imaging beamline. © The Authors
- ItemMicro-computed tomography beamline of the Australian synchrotron: micron-size spatial resolution X-ray imaging(MDPI, 2023-01-18) Arhatari, BD; Stevenson, AW; Thompson, D; Walsh, A; Fiala, T; Ruben, G; Afshar, N; Ozbilgen, S; Feng, TT; Mudie, ST; Tissa, PThe first new beamline of the BRIGHT project—involving the construction of eight new beamlines at the Australian Synchrotron—is the Micro-Computed Tomography (MCT) beamline. MCT will extend the facility’s capability for higher spatial resolution X-ray-computed tomographic imaging allowing for commensurately smaller samples in comparison with the existing Imaging and Medical Beamline (IMBL). The source is a bending-magnet and it is operating in the X-ray energy range from 8 to 40 keV. The beamline provides important new capability for a range of biological and material-science applications. Several imaging modes will be offered such as various X-ray phase-contrast modalities (propagation-based, grating-based, and speckle-based), in addition to conventional absorption contrast. The unique properties of synchrotron radiation sources (high coherence, energy tunability, and high brightness) are predominantly well-suited for producing phase contrast data. An update on the progress of the MCT project in delivering high-spatial-resolution imaging (in the order of micron size) of mm-scale objects will be presented in detail with some imaging results from the hot-commissioning stage. © 2023 The Authors.