Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Olson, MD"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Finite element modelling of welded austenitic stainless steel plate with 8-passes
    (The American Society of Mechanical Engineers, 2014-07-20) Patel, VI; Muránsky, O; Hamelin, CJ; Olson, MD; Hill, MR; Edwards, L
    The current paper presents a finite element analysis of an eight-pass groove weld in a 316L austenitic stainless steel plate. A dedicated welding heat source modelling tool was employed to produce volumetric body power density data for each weld pass, thus simulating weld-induced thermal loads. Thermocouple measurements and cross-weld macrographs taken from a weld specimen were used for heat source calibration. A mechanical finite element analysis was then conducted, using the calibrated thermal loads and a Lemaitre-Chaboche mixed work-hardening model. The predicted post-weld residual stresses were validated using contour method measurements: good agreement between measured and simulated residual stress fields was observed. A sensitivity analysis was also conducted to identify the boundary conditions that best represent a tack-welded I-beam support, which was present on the specimen back-face during the welding. © 2014 ASME
  • No Thumbnail Available
    Item
    A validated numerical model for residual stress predictions in an eight-pass-welded stainless steel plate
    (Trans Tech Publications, 2014-02-06) Patel, VI; Muránsky, O; Hamelin, CJ; Olson, MD; Hill, MR; Edwards, L
    Welding processes create a complex transient state of temperature that results in post-weld residual stresses. The current work presents a finite element (FE) analysis of the residual stress distribution in an eight-pass slot weld, conducted using a 316L austenitic stainless steel plate with 308L stainless steel filler metal. A thermal FE model is used to calibrate the transient thermal profile applied during the welding process. Time-resolved body heat flux data from this model is then used in a mechanical FE analysis to predict the resultant post-weld residual stress field. The mechanical analysis made use of the Lemaitre-Chaboche mixed isotropic-kinematic work-hardening model to accurately capture the constitutive response of the 316L weldment during the simulated multi-pass weld process, which results in an applied cyclic thermo-mechanical loading. The analysis is validated by contour method measurements performed on a representative weld specimen. Reasonable agreement between the predicted longitudinal residual stress field and contour measurement is observed, giving confidence in the results of measurements and FE weld model presented.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback