Browsing by Author "Nishibori, E"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHirshfeld atom refinement for modelling strong hydrogen bonds(International Union of Crystallography, 2014-01-01) Woinska, M; Jayatilaka, D; Spackman, MA; Edwards, AJ; Dominiak, DJ; Wozniak, PM; Nishibori, E; Sugimoto, K; Grabowsky, SHigh-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position. © 2014, International Union of Crystallography.
- ItemMeasurement of electric fields experienced by urea guest molecules in the 18-crown-6/urea (1:5) host–guest complex: an experimental reference point for electric-field-assisted catalysis(American Chemical Society, 2019-02-14) Shi, MW; Thomas, SP; Hathwar, VR; Edwards, AJ; Piltz, RO; Jayatilaka, D; Koutsantonis, GA; Overgaard, J; Nishibori, E; Iversen, BB; Spackman, MAHigh-resolution synchrotron and neutron single-crystal diffraction data of 18-crown-6/(pentakis)urea measured at 30 K are combined, with the aim of better appreciating the electrostatics associated with intermolecular interactions in condensed matter. With two 18-crown-6 molecules and five different urea molecules in the crystal, this represents the most ambitious combined X-ray/synchrotron and neutron experimental charge density analysis to date on a cocrystal or host-guest system incorporating such a large number of unique molecules. The dipole moments of the five urea guest molecules in the crystal are enhanced considerably compared to values determined for isolated molecules, and 2D maps of the electrostatic potential and electric field show clearly how the urea molecules are oriented with dipole moments aligned along the electric field exerted by their molecular neighbors. Experimental electric fields in the range of 10-19 GV m-1, obtained for the five different urea environments, corroborate independent measurements of electric fields in the active sites of enzymes and provide an important experimental reference point for recent discussions focused on electric-field-assisted catalysis. © 2019 American Chemical Society