Browsing by Author "Naumovich, EN"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemChemically induced expansion of La2NiO4+ δ-based materials(American Chemical Society, 2007-03-21) Kharton, VV; Kovalevsky, AV; Avdeev, M; Tsipis, EV; Patrakeev, MV; Yaremchenko, AA; Naumovich, EN; Frade, JRThe equilibrium chemical strains induced by the oxygen hyperstoichiometry variations in mixed-conducting La2Ni1-xMxO4+δ (M = Fe, Co, Cu; x = 0−0.2) with K2NiF4-type structure, were studied by controlled-atmosphere dilatometry at 923−1223 K in the oxygen partial pressure range 5 × 10-4 to 0.7 atm. In combination with the oxygen content measured by coulometric titration and thermogravimetry, the results reveal a very low chemical expansivity, favorable for high-temperature electrochemical applications. Under oxidizing conditions, the isothermal expansion relative to atmospheric oxygen pressure (εC) is less than 0.02%. The ratio between these values and the corresponding nonstoichiometry increment varies from −3 × 10-3 to 6 × 10-3, which is much lower compared to most permeable mixed conductors derived from perovskite-like cobaltites and ferrites. Consequently, the chemical contribution to apparent thermal expansion coefficients at a fixed oxygen pressure, (13.7−15.1) × 10-6 K-1, does not exceed 5%. The high-temperature X-ray diffraction studies showed that this behavior results from strongly anisotropic expansion of the K2NiF4-type lattice, namely the opposing variations of the unit-cell parameters on changing oxygen stoichiometry. © 2007, American Chemical Society
- ItemMagnetization, Mössbauer and isothermal dilatometric behavior of oxidized YBa(Co,Fe)4O7+δ(Royal Society of Chemistry, 2011-11-08) Waerenborgh, JC; Tsipis, EV; Pereira, LCJ; Avdeev, M; Naumovich, EN; Kharton, VVMössbauer spectroscopy and magnetization studies of YBaCo4-xFexO7+δ (x = 0–0.8) oxidized at 0.21 and 100 atm O2, indicate an increasing role of penta-coordinated Co3+ states when the oxygen content approaches 8–8.5 atoms per formula unit. Strong magnetic correlations are observed in YBaCo4-xFexO8.5 from 2 K up to 55–70 K, whilst the average magnetic moment of Co3+ is lower than that for δ ≤ 0.2, in correlation with the lower 57Fe3+ isomer shifts determined from Mössbauer spectra. The hypothesis on dominant five-fold coordination of cobalt cations was validated by molecular dynamics modeling of YBaCo4O8.5. The iron solubility limit in YBaCo4-xFexO7+δ corresponds to approximately x ≈ 0.7. The oxygen intercalation processes in YBaCo4O7+δ at 470–700 K, analyzed by X-ray diffraction, thermogravimetry and controlled-atmosphere dilatometry, lead to unusual volume expansion opposing to the cobalt cation radius variations. This behavior is associated with increasing cobalt coordination numbers and with rising local distortions and disorder in the crystal lattice on oxidation, predicted by the computer simulations. When the oxygen partial pressure increases from 4 × 10−5 to 1 atm, the linear strain in YBaCo4O7+δ ceramics at 598 K is as high as 0.33%. © Royal Society of Chemistry 2021
- ItemMixed conductivity, thermal expansion and defect chemistry of a-site deficient LaNi(0.5)Ji(0.5)O(3-delta)(Elsevier, 2007-03-19) Yakovlev, SO; Kharton, VV; Yaremchenko, AA; Kovalevsky, AV; Naumovich, EN; Frade, JRThis work is focused on the analysis of defect chemistry and partial electronic and oxygen ionic conductivities of A-site deficient La1-xNi0.5Ti0.5O3-delta (x = 0.05 and 0.10). The orthorhombic-to-rhombohedral phase transition was monitored by means of dilatometry and high-temperature X-ray diffractometry. The average thermal expansion coefficients vary in the range (8.5-13.0) x 10(-6) K-1, increasing with temperature and A-site deficiency. The ion transference numbers determined by the Faradaic efficiency measurements are lower than 0.1% at 900-975 degrees C in air. Activation energies of the oxygen ionic conductivity at 897-977 degrees C are 430 and 220 kJ/mol for x = 0.05 and 0.10, respectively. Atomistic simulation demonstrated high stability of ternary defect clusters formed by the vacant sites in the A-sublattice, oxygen vacancies and W, cations, which leads to a very low level of mixed conductivity. © 2007, Elsevier Ltd.
- ItemOxygen nonstoichiometry, chemical expansion, mixed conductivity, and anodic behavior of Mo-substituted Sr3Fe2O7-δ(Elsevier, 2010-07-26) Kharton, VV; Patrakeev, MV; Tsipis, EV; Avdeev, M; Naumovich, EN; Anikina, PV; Waerenborgh, JCThe incorporation of molybdenum in the Ruddlesden-Popper type Sr3Fe2-xMoxO7-δ (x = 0–0.1) decreases oxygen deficiency, thermal expansion and electron-hole transport, and increases n-type electronic conductivity in reducing atmospheres. The oxygen ionic conduction remains essentially unaffected by doping. The equilibrium p(O2)–T–δ diagram of Sr3Fe1.9Mo0.1O7-δ, collected in oxygen partial pressure ranges from 10− 20 to 0.7 atm at 973–1223 K, can be adequately described by a defect model accounting for the energetic nonequivalence of apical O1 and equatorial O3 sites in the layered structure, in combination with iron disproportionation and stable octahedral coordination of Mo6+ and Mo5+ cations. The calculated enthalpy of anion exchange between the O1 and O3 positions, 0.49–0.51 eV, is in agreement with the values predicted by the atomistic computer simulation technique. The high-temperature X-ray diffraction studies showed a strongly anisotropic expansion of the Ruddlesden-Popper lattice on reduction, leading to very low chemical strains favorable for electrochemical applications. At 298–1223 K and oxygen pressures from 10− 8 to 0.21 atm, the linear thermal expansion coefficient of Sr3Fe1.9Mo0.1O7-δ varies in the narrow range (12.9–14.2) × 10− 6 K− 1. The relatively low level of n-type electronic conductivity leads, however, to a poor performance of porous Sr3Fe1.9Mo0.1O7-δ anodes in contact with lanthanum gallate-based solid electrolyte under reducing conditions. © 2010, Elsevier Ltd.
- ItemOxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ-based materials(Springer, 2007-08) Kovalevsky, AV; Kharton, VV; Yaremchenko, AA; Pivak, YV; Tsipis, EV; Yakovlev, SO; Markov, AA; Naumovich, EN; Frade, JRThe high-temperature electronic and ionic transport properties, thermal expansion and stability of dense Pr2NiO4+δ Pr2Ni0.9Fe0.1O4+δ ceramics have been appraised in comparison with K2NiF4-type lanthanum nickelate. Under oxidizing conditions, the extensive oxygen uptake at temperatures below 1073-1223 K leads to reversible decomposition of Pr2NiO4-based solid solutions into Ruddlesden-Popper type Pr4Ni3O10 and praseodymium oxide phases. The substitution of nickel with copper decreases the oxygen content and phase transition temperature, whilst the incorporation of iron cations has opposite effects. Both types of doping tend to decrease stability in reducing atmospheres as estimated from the oxygen partial pressure dependencies of total conductivity and Seebeck coefficient. The steady-state oxygen permeability of Pr2NiO4+δ ceramics at 1173-1223 K, limited by both surface-exchange kinetics and bulk ionic conduction, is similar to that of La2NiO4+δ. The phase transformation on cooling results in considerably higher electronic conductivity and oxygen permeation, but is associated also with significant volume changes revealed by dilatometry. At 973-1073 K, porous Pr2Ni0.8Cu0.2O4+δ electrodes deposited onto lanthanum gallate-based solid electrolyte exhibit lower anodic overpotentials compared to Pr2Ni0.8Cu0.2O4+δ, whilst cathodic reduction decreases their performance. © 2007, Springer.