Browsing by Author "Martín, JM"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLarge celestine orebodies formed by early-diagenetic replacement of gypsified stromatolites (Upper Miocene, Montevive–Escúzar deposit, Granada Basin, Spain)(Elsevier, 2015-01-01) García-Veigas, J; Rosell, L; Cendón, DI; Gilbert, L; Martín, JM; Torres-Ruiz, J; Ortí, FThe Montevive and the Escúzar stratabound celestine orebodies in the Upper Miocene evaporite succession of the intramontane Granada Basin (Spain) constitute one of the largest strontium deposits in the world. Celestine occurs within a gypsum/anhydrite–halite evaporite sequence where it replaces gypsum and gypsified stromatolites preserving carbonate peloids. 87Sr/86Sr and δ34S values in the Montevive celestine deposit are close to those reported for the saline unit (Chimeneas Halite; marine to nonmarine) but higher than those of the overlying gypsum unit (Agrón Gypsum; nonmarine). 87Sr/86Sr and δ34S isotope values in the Escúzar celestine deposit match the nonmarine values recorded in the upper part of the Agrón Gypsum. The similarity in isotope values between celestine and the corresponding gypsum host in the Escúzar deposit points to early-diagenetic mineralization. According to that, both orebodies are diachronous. Gypsum pseudomorphs and molds, intraformational breccias and karst structures in these celestine deposits point to dissolved gypsum as the main sulfate source. Diagenetic–hydrothermal CaCl2 brines are interpreted to be the main strontium source. The spatial relationship between gypsified stromatolites and the ore deposits suggests the existence of coeval thermal springs related to fractures, bordering the saline lake. The proposed model envisages gypsum dissolution by SO42 −-poor and Sr2 +-rich, CaCl2 diagenetic–hydrothermal water discharging in coastal ponds at times of dry periods and low meteoric water inflow. The increase in SO42 − concentration by gypsum dissolution and the low solubility of SrSO4 would lead to celestine precipitation replacing gypsum and gypsified stromatolites. © 2014 Elsevier B.V.
- ItemSalt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain)(Elsevier Science BV, 2013-01-01) García-Veigas, J; Cendón, DI; Rosell, L; Orti, F; Torres Ruiz, J; Martín, JM; Sanz, EA group of sedimentary basins in the Betic Chain were formed during the Middle-Late Miocene as a result of the closure of the Tethys during the Alpine orogeny. In the Late Miocene (Tortonian-Messinian) the connections between the Atlantic Ocean and Mediterranean Sea were interrupted and those basins hosted major evaporites. The Granada Basin, an 'inner basin' located far from the Mediterranean, contains a thick rock salt deposited during the latest Tortonian in the transition from marine to non-marine conditions. In the centre of the basin, three halite-bearing units overlie a basal anhydrite bed: the Lower Halite Unit, the Intermediate Sandstone Unit and the Upper Halite Unit. Fluid inclusion compositions and bromine concentrations in halite, together with stable isotopes (delta S-34(sulfate), delta O-18(sulfate) and Sr-87/Sr-86) indicate a mixture of different inflow waters in the Granada Basin, beginning with a marine lagoon that evolved into a salt-pan strongly isolated from the sea. Saline waters evolved from sulfate-rich marine-derived to sulfate-depleted non-marine brines influenced by the addition of CaCl2-rich inputs. These CaCl2-rich waters were probably linked to thermal fluids associated with a major crustal fracture system (Crevillente or Cadiz-Alicante fault system) that cuts through the Granada Basin. © 2013, Elsevier Ltd.