Browsing by Author "Maran, R"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemComplex magnetic structure in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2016-02-02) Ulrich, C; Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheng, J; Danilkin, SA; Hu, S; Siedel, J; Valanoor, NMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters coexist far beyond room temperature, making it the ideal candidate for technological applications. In particular, multiferroic thin films are the most promising pathway for spintronics applications. Therefore we have investigated BiFeO3 thin films by neutron diffraction. At present, the underlying physics of the magnetoelectric coupling is not fully understood and competing theories exist with partly conflicting predictions. For example, the existence of spin cycloid is a mandatory requirement to establish a direct magnetoelectric coupling. Thus far internal strain in epitaxially grown films has limited the stability of the spin cycloid for BiFeO3 films with less than 300 nm thickness, causing the spin cycloid to collapses to a collinear G-type antiferromagnetic structure. Our neutron diffraction experiments have demonstrated that we were able to realize a spin cycloid in films of just 100 nm thickness through improved electrostatic and epitaxial constraints. This underlines the importance of the correct mechanical and electrical boundary conditions required to achieve emergent spin properties in mutiferroic thin film systems. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.
- ItemDirect evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2017-01-31) Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheung, J; Dainlkin, SA; Lee, WT; Hu, S; Seidel, J; Valanoor, N; Ulrich, CMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. In particular, magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. To realize magnonic devices, a robust long-range spin cycloid with well known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions during growth [1]. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [112] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk single crystals. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.
- ItemElement-specific depth profile of magnetism and stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 interface(American Physical Society, 2014-07-11) Bertinshaw, J; Brück, S; Lott, D; Fritzsche, H; Khaydukov, Y; Soltwedel, O; Keller, T; Goering, E; Audehm, P; Cortie, DL; Hutchison, WD; Ramasse, QM; Arredondo, M; Maran, R; Nagarajan, V; Klose, F; Ulrich, CDepth-sensitive magnetic, structural, and chemical characterization is important in the understanding and optimization of physical phenomena emerging at the interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant x-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3/multiferroic BiFeO3 bilayers with subnanometer resolution. In particular, the x-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element-specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers [P. Yu et al., Phys. Rev. Lett. 105, 027201 (2010)]. Additional resonant x-ray reflection measurements indicate a region of altered Mn and O content at the interface, with a thickness matching that of the magnetic diluted layer, as the origin of the reduction of the magnetic moment.© 2014, American Physical Society.
- ItemNeutron studies of functional multiferroic BiFeO3 thin films(Australian Institute of Physics, 2012-02-01) Bertinshaw, G; Maran, R; Valanoor, N; Klose, F; Ulrich, CIn a multiferroic material, ferromagnetism (FM) and ferroelectricity (FE) coexist, presenting exciting opportunities for research into new phenomena and technological innovation. Bismuth Ferrite (BiFeO3) is among the rare cases where both properties exist at room temperature [1]. As such, its use in functional thin film heterostructures, like multiferroic tunnel junctions or exchange bias systems, which combine multiferroic (MF) and ferromagnetic layers, such as La0.67Sr0.33MnO3 (LaSrMnO3), is of particular interest [2]. In a series of resistivity based measurements [3] and neutron diffraction and polarised neutron reflectometry measurements of BiFeO3/LaSrMnO3 thin film bilayers we have investigated and found evidence of electromagnetic coupling between the layers. We use these results to provide deeper insight into the complex interplay between the orbital and spin degrees of freedom at the bilayer interface. Neutron experiments were performed at the Bragg Institute, ANSTO in Sydney, Australia, FRM-II in Munich, Germany and NRC-CNBC in Chalk River, Canada.
- ItemPolarised neutron diffraction study of the spin cycloid in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2017-01-31) Lee, WT; Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheung, J; Danilkin, SA; Hu, S; Seidel, J; Valanoor, N; Ulrich, CPolarised neutron scattering is capable of separating magnetic structure from chemical structure. Here we report an experiment using the newly available capability at ANSTO, namely polarised neutron diffraction using polarised 3He neutron spin-filters to obtain the detail magnetic structure in even highly complex magnetic materials. Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as BiFeO3, with a spin cycloidal structure would be ideal candidates for this purpose. In order to realise magnonic devices, a robust long-range spin cycloid with well-known direction is desired. Despite extensive investigation, the stabilization of a large scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. The polarized neutron diffraction experiment did confirm the existence of the spin cycloid in this BiFeO3 film, which is an important prerequisite for the multiferroic coupling.
- ItemStability and scaling behavior of the spin cycloid in BiFeO3 thin films(Australian Institute of Physics, 2018-01-30) Burns, SR; Sando, D; Bertinshaw, J; Russell, L; Xu, X; Maran, R; Callori, SJ; Ramash, V; Cheung, J; Danilkin, SA; Deng, G; Lee, WT; Hu, S; Bellaiche, L; Seidel, J; Valanoor, N; Ulrich, CMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. To realize magnonic devices, a robust longrange spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (<300 nm) thin BiFeO3 films has not been accomplished. Using neutron diffraction we were able to demonstrate cycloidal spin order in 100 nm BiFeO3 thin films which became stable through the careful choice of crystallographic orientation and control of the electrostatic and strain boundary conditions during growth [1]. Furthermore, Co-doping, which has demonstrated to further stabilize the spin cycloid, did allow us to obtain spin cycloid order in films of just 50 nm thickness, i.e. films thinner than the cycloidal length of about 64 nm. Interestingly, in thin films the propagation direction of the spin cycloid has changed and shows a peculiar scaling behavior for thinnest films. We were able to support these observations by Monte Carlo theory based on a first-principles effective Hamiltonian method. Our results therefore offer new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.