Browsing by Author "Macreadie, PI"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemGeochemical analyses reveal the importance of environmental history for blue carbon sequestration(American Geophysical Union (AGU), 2017-07-07) Kelleway, JJ; Saintilan, N; Macreadie, PI; Baldock, JA; Heijnis, H; Zawadzki, A; Gadd, PS; Jacobsen, GE; Ralph, PJCoastal habitats including saltmarshes and mangrove forests can accumulate and store significant blue carbon stocks, which may persist for millennia. Despite this implied stability, the distribution and structure of intertidal-supratidal wetlands are known to respond to changes imposed by geomorphic evolution, climatic, sea level, and anthropogenic influences. In this study, we reconstruct environmental histories and biogeochemical conditions in four wetlands of similar contemporary vegetation in SE Australia. The objective is to assess the importance of historic factors to contemporary organic carbon (C) stocks and accumulation rates. Results from the four cores—two collected from marine-influenced saltmarshes (Wapengo marine site (WAP-M) and Port Stephens marine site (POR-M)) and two from fluvial influenced saltmarshes (Wapengo fluvial site (WAP-F) and Port Stephens fluvial site (POR-F))—highlight different environmental histories and preservation conditions. High C stocks are associated with the presence of a mangrove phase below the contemporary saltmarsh sediments in the POR-M and POR-F cores. 13C nuclear magnetic resonance analyses show this historic mangrove root C to be remarkably stable in its molecular composition despite its age, consistent with its position in deep sediments. WAP-M and WAP-F cores did not contain mangrove root C; however, significant preservation of char C (up to 46% of C in some depths) in WAP-F reveals the importance of historic catchment processes to this site. Together, these results highlight the importance of integrating historic ecosystem and catchment factors into attempts to upscale C accounting to broader spatial scales. ©2017 American Geophysical Union - Open Access
- ItemImpacts of land reclamation on tidal marsh ‘blue carbon’ stocks(Elsevier, 2019-07-01) Ewers Lewis, CJ; Baldock, JA; Hawke, B; Gadd, PS; Zawadzki, A; Heijnis, H; Jacobsen, GE; Rogers, K; Macreadie, PITidal marsh ecosystems are among earth's most efficient natural organic carbon (C) sinks and provide myriad ecosystem services. However, approximately half have been ‘reclaimed’ – i.e. converted to other land uses – potentially turning them into sources of greenhouse gas emissions. In this study, we applied C stock measurements and paleoanalytical techniques to sediments from reclaimed and intact tidal marshes in southeast Australia. We aimed to assess the impacts of reclamation on: 1) the magnitude of existing sediment C stocks; 2) ongoing C sequestration and storage; and 3) C quality. Differences in sediment horizon depths (indicated by Itrax-XRF scanning) and ages (indicated by lead-210 and radiocarbon dating) suggest a physical loss of sediments following reclamation, as well as slowing of sediment accumulation rates. Sediments at one meter depth were between ~2000 and ~5300 years older in reclaimed cores compared to intact marsh cores. We estimate a 70% loss of sediment C in reclaimed sites (equal to 73 Mg C ha−1), relative to stocks in intact tidal marshes during a comparable time period. Following reclamation, sediment C was characterized by coarse particulate organic matter with lower alkyl-o-alkyl ratios and higher amounts of aromatic C, suggesting a lower extent of decomposition and therefore lower likelihood of being incorporated into long-term C stocks compared to that of intact tidal marshes. We conclude that reclamation of tidal marshes can diminish C stocks that have accumulated over millennial time scales, and these losses may go undetected if additional analyses are not employed in conjunction with C stock estimates. © 2019 Published by Elsevier B.V.
- ItemLosses and recovery of organic carbon from a seagrass ecosystem following disturbance(The Royal Society Publishing, 2015-10-21) Macreadie, PI; Trevathan-Tackett, SM; Skibeck, CG; Sanderman, J; Curleveski, N; Jacobsen, GE; Seymour, JRSeagrasses are among the Earth's most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences.© 2015, The Royal Society.
- ItemSeventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes(John Wiley & Sons, 2016-03-22) Kelleway, JJ; Saintilan, N; Macreadie, PI; Skilbeck, CG; Zawadzki, A; Ralph, PJShifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate-mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south-eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km−2 yr−1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km−2 yr−1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km−2 yr−1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming. © 2015, John Wiley & Sons Ltd.