Browsing by Author "Ma, J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemNegative thermal expansion of Ni-doped MnCoGe around room temperature - magnetic tuning(Australian Institute of Physics, 2019-02-05) Ren, QY; Hutchinson, WD; Wang, JL; Studer, AJ; Wang, G; Zhou, H; Ma, J; Campbell, SJSeveral materials have been shown to exhibit abnormal contraction with increasing temperature; the phenomenon of negative thermal expansion (NTE). Given this special property, NTE materials fulfill important functions in many modern technologies, such as electrodes of fuel cell, organic light-emitting diode (OLED), optical fibre, as well as high precision electronics and optical mirrors. In general, Nate properties are associated with local structural distortions or phase transitions, such as transverse phonon vibration in rigid unit modes, exile network of metal-organic framework, charge transfer, magneto-volume effect, ferroelectric transition, as well as displacive phase transition. Control or manipulation of Nate properties have become topics of increasing importance over the past two decades. Effective methods to produce materials with Nate properties include chemical doping, nanostructuralization, hydration and applied pressure. Recently, MoCoGe-based compounds were considered as a group of materials that exhibit giant NTE, with this behaviour attributed to the displacive martensitic phase transformation. In this investigation, we reported a new method to manipulate the NTE properties using applied magnetic fields. It is found that doping of 5% Ni on the Mn site could bring about a magneto-structural (MS) coupling in MnCoGe-based compounds. Magnetic-field-dependent neutron diffraction measurements demonstrated that an 8 T magnetic field could suppress the NTE by 31% at 295 K through this MS coupling.
- ItemTemperature and composition phase diagram in the iron-based ladder compounds Ba1−xCsxFe2Se3(American Physical Society, 2015-05-28) Hawai, T; Nambu, Y; Ohgushi, K; Du, F; Hirata, Y; Avdeev, M; Uwatoko, Y; Sekine, Y; Fukazawa, H; Ma, J; Chi, S; Ueda, Y; Yoshizawa, H; Sato, TJWe investigated the iron-based ladder compounds (Ba,Cs)Fe2Se3. Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3, but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures. ©2015 American Physical Society
- ItemUncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteries(Wiley, 2020-02-20) Hu, P; Zou, Z; Sun, XW; Wang, D; Ma, J; Kong, QY; Xiao, DD; Gu, L; Zhou, XH; Zhao, JW; Dong, SM; He, B; Avdeev, M; Shi, S; Cui, GL; Chen, LQThere is a long‐standing consciousness that the rhombohedral NASICON‐type compounds as promising cathodes for Li+/Na+ batteries should have inactive M1(6b) sites with ion (de)intercalation occurring only in the M2 (18e) sites. Of particular significance is that M1 sites active for charge/discharge are commonly considered undesirable because the ion diffusion tends to be disrupted by the irregular occupation of channels, which accelerates the deterioration of battery. However, it is found that the structural stability can be substantially improved by the mixed occupation of Na+/Zn2+ at both M1 and M2 when using NaV2(PO4)3 (NVP) as a cathode for Zn‐ion batteries. The results of atomic‐scale scanning transmission electron microscopy, analysis of ab initio molecular dynamics simulations, and an accurate bond‐valence‐based structural model reveal that the improvement is due to the facile migration of Zn2+ in NVP, which is enabled by a concerted Na+/Zn2+ transfer mechanism. In addition, significant improvement of the electronic conductivity and mechanical properties is achieved in Zn2+‐intercalated ZnNaV2(PO4)3 in comparison with those of Na3V2(PO4)3. This work not only provides in‐depth insight into Zn2+ intercalation and dynamics in NVP unlocked by activating the M1 sites, but also opens a new route toward design of improved NASICON cathodes. © 1999-2021 John Wiley & Sons, Inc.
- ItemUnlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution(Elsevier, 2021-11) Hou, J; Hadouchi, M; Sui, L; Liu, J; Tang, M; Kan, WH; Avdeev, M; Zhong, G; Liao, YK; Lai, YH; Chu, YH; Lin, HJ; Chen, CT; Hu, ZW; Huang, YH; Ma, JThe exploitation of high energy and high power densities cathode materials for sodium ion batteries is a challenge. Na-super-ionic-conductor (NASICON) Na4MnV(PO4)3 is one of promising high-performance and low-cost cathode materials, however, still suffers from not reaching the theoretical capacity, low rate capability, and poor cycling stability. In this work, we deploy a novel sodium-deficient NASICON fluorinated phosphate cathode material for sodium ion batteries which demonstrates, notably, high energy and high power densities concomitant with high sodium diffusion kinetics. The enhanced performance of this novel Na3.85⬜0.15MnV(PO3.95F0.05)3 cathode was evidenced by demonstrating a relatively high energy density of ∼380 Wh kg−1 at low rate with much improved rate capability compared to non-doped Na4MnV(PO4)3, and long cycling life over 2000 cycles at high current rates. The structural investigation during battery operation using in situ x-ray diffraction (XRD) reveals bi-phase mechanism with high structural reversibility. The combined XRD and 23Na nuclear magnetic resonance (NMR) analyses demonstrate that the sodium extraction/insertion from Na2 is faster than Na1 site. These findings open promising prospects for unlocking of high energy and high power densities of NASICON phosphate materials by fluorine substitution towards high-performance sodium ion batteries. © 2021 Elsevier B.V.