Browsing by Author "LeClair, PR"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemArtificially modulated chemical order in thin films: a different approach to create ferro/antiferromagnetic interfaces(American Physical Society, 2010-10-06) Saerbeck, T; Klose, F; Lott, D; Mankey, GJ; Lu, Z; LeClair, PR; Schmidt, W; Stampfl, APJ; Danilkin, SA; Yethiraj, M; Schreyer, AWe report on a unique magnetic exchange interaction in a thin film of FePt3, comprising an artificially created ferromagnetic (FM)/antiferromagnetic (AFM) modulation, but homogeneous chemical composition and epitaxy throughout the film. The chemical order, on the other hand, is modulated resulting in the formation of alternating FM/AFM layers. To determine the existence and form of the magnetic structure within the monostoichiometric thin film, we use a unique combination of polarized neutron reflectometry, x-ray/neutron diffraction, and conventional magnetometry. This artificial stratified AFM/FM FePt3 exhibits a high magnetic exchange bias thus opening up possibilities to study such magnetic phenomena in a perfectly lattice-matched system. © 2010, American Physical Society
- ItemA new approach to the creation of magnetically modulated structures(Australian Institute of Physics, 2010-02-03) Saerbeck, T; Klose, F; Lott, D; Mankey, GJ; Lu, Z; LeClair, PR; Stampfl, APJ; Danilkin, SA; Yethiraj, M; Schreyer, AThe plethora of structural and magnetic properties observed in many transition metal alloys has attracted a great deal of interest in both the pure and applied sciences [1]. One key attribute of these alloys is that their electronic and magnetic properties are extremely sensitive to not only stoichiometry but order as well. In this paper we report on a new approach of creating a magnetically modulated structure, without changing composition or lattice structure, namely by artificially controlling the degree of chemical order in the material. The compound FePt3, as it is well known from bulk crystals, has the extraordinary property to evolve ferromagnetic (FM) or antiferromagnetic (AFM) phases determined by the degree of chemical ordering [2]. We succeeded in preparing epitaxial FePt3 superlattices of homogeneous composition consisting of an artificially modulated ferro/antiferromagnetic layering sequence simply by alternating the growth temperature. A direct effect of such an exotic FM/AFM interface is the observation of a high exchange bias upon field cooling through the Nèel temperature. In order to quantify the degree of antiferromagnetic ordering, high angle neutron diffraction has been performed using the triple axis spectrometer IN12 (Institute Laue Langevin, Grenoble) and TAIPAN (Australian Nuclear Science and Technology Organisation). Similar to chemically ordered bulk FePt3 the superlattice exhibits the onset of a (½ ½ 0) AFM Bragg peak below a temperature of TN=140 K (Bulk TN=160 K [2]). Using the polarized neutron reflectometry technique at the German research facility GKSS, Geesthacht, a detailed layer resolved magnetic characterization of the superlattice was carried out.
- ItemStructural and magnetic properties of epitaxial Fe25Pt75(American Vacuum Society, 2009-07) Lu, Z; Walock, MJ; LeClair, PR; Mankey, GJ; Mani, P; Lott, D; Klose, F; Ambaye, H; Lauter, V; Wolff, M; Schreyer, A; Christen, HM; Sales, BCEpitaxial films of Fe25Pt75 have a number of different magnetic phases as a function of temperature and chemical order. For example, chemically ordered epitaxial films have two distinct antiferromagnetic phases at temperatures below similar to 160 K and exhibit paramagnetism above that temperature. In sharp contrast, chemically disordered epitaxial films are ferromagnetic with a Curie temperature that is greater than 400 K. It is demonstrated that by varying the substrate temperature during growth, epitaxial films with varying degrees of chemical order can be produced and it is possible to produce an alloy with the same composition throughout the film with a modified magnetic structure. The authors used polarized neutron reflectivity to gauge the magnetism of a Fe25Pt75 sample produced with a periodic variation in the growth temperature and showed that the sample exhibits a reduced Curie temperature of approximately 300 K as compared to bulk Fe25Pt75. © 2009, American Vacuum Society
- ItemTailoring exchange bias through chemical order in epitaxial FePt3 films(AIP Publishing, 2013-01-01) Saerbeck, T; Zhu, HL; Lott, D; Lee, H; LeClair, PR; Mankey, GJ; Stampfl, APJ; Klose, FIntentional introduction of chemical disorder into mono-stoichiometric epitaxial FePt3 films allows to create a ferro-/antiferromagnetic two-phase system, which shows a pronounced and controllable exchange bias effect. In contrast to conventional exchange bias systems, granular magnetic interfaces are created within the same crystallographic structure by local variation of chemical order. The amount of the exchange bias can be controlled by the relative amount and size of ferromagnetic and antiferromagnetic volume fractions and the interface between them. The tailoring of the magnetic composition alone, without affecting the chemical and structural compositions, opens the way to study granular magnetic exchange bias concepts separated from structural artifacts. © 2013, American Institute of Physics.