Browsing by Author "Kimura, H"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLarge magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film(Nature Research, 2014-06-11) Zhao, HY; Kimura, H; Cheng, ZX; Osada, M; Wang, JL; Wang, XL; Dou, SX; Liu, Y; Yu, JD; Matsumoto, T; Tohei, T; Shibata, N; Ikuhara, YMultiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi5Ti3FeO15 with high ferroelectric Curie temperature of ~1000 K. Bi5Ti3FeO15 thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi5Ti3FeO15 with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature. © 2020 Springer Nature Limited
- ItemThe magnetic structure of an epitaxial BiMn0.5Fe0.5O3 thin film on SrTiO3 (001) studied with neutron diffraction(American Institute of Physics, 2012-10-22) Cortie, DL; Stampfl, APJ; Klose, F; Du, Y; Wang, XL; Zhao, HY; Kimura, H; Cheng, ZXHigh-angle neutron diffraction was used to directly reveal the atomic-scale magnetic structure of a single-crystalline BiMn0.5Fe0.5O3 thin film deposited on a SrTiO3 (001) substrate. The BiMn0.5Fe0.5O3 phase exhibits distinctive magnetic properties that differentiate it from both parent compounds: BiFeO3 and BiMnO3. A transition to long-range G-type antiferromagnetism was observed below 120K with a (1/2 1/2 1/2) propagation vector. A weak ferromagnetic behavior was measured at low temperature by superconducting quantum interference device (SQUID) magnetometry. There is no indication of the spin cycloid, known for BiFeO3, in the BiMn0.5Fe0.5O3 thin film. The neutron diffraction suggests a random distribution of Mn and Fe over perovskite B sites. © 2012, American Institute of Physics.