Browsing by Author "Kim, S"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemHIFAR major shutdown report : inspection of reactor aluminum tank and replacement of secondary cooling circuit pipework(Technicatome, 1996-11-04) Kim, SHIFAR (High Flux Australian Reactor) is a 100MW DIDO-class research reactor operated by the Australian Nuclear Science and Technology Organisation (ANSTO). Every four years HIFAR has a scheduled major shutdown to undertake inspection, maintenance and upgrade activities that are not possible at other times. The last major shutdown was in late 1995 and lasted 10 weeks during which, and amongst other activities, the Reactor Aluminium Tank was inspected and the major part of the Secondary Cooling Water Circuit pipework replaced. New cooling pipework was designed in accordance with Australian Standards Pressure Piping Code, employing NISA II computer software for finite element analysis where appropriate, with a view to ensuring safety under every conceivable operating and accident condition. Design, manufacture and installation activities were carried out according to ANSTO Engineering's Quality System Procedures (1S09OO1-1994 accredited) and agreed by the Nuclear Safety Bureau, an independent organisation. through staged document submissions.
- ItemNeutron beam facilities at the Replacement Research Reactor, ANSTO(International Group On Research Reactors, 2003-03-24) Kim, SThe exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives an update on the current status and applications of the neutron beam instruments. © 2003 The Author
- ItemNew silicon irradiation rig design for OPAL reactor(European Nuclear Society, 2007-03-11) Amos, PE; Kim, SDescribed is an overview of Neutron Transmutation Doping (NTD) silicon processing facilities in the OPAL reactor. A suite of six high capacity NTD silicon rigs have been developed and installed. Optimum quality of the arrays is achieved through rotation of the silicon in the rigs to ensure even neutron fluence. The innovative design features a simple combination of water bearing and drive/rotation utilising reactor pool water. A hydrostatic water bearing ensures that there is no physical contact between the single moving component and static rig housing during operation. This design overcomes many of the existing reliability and maintenance issues involved with typical mechanical drive systems. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Ingot handling systems are also provided to ensure the safe and efficient transfer of silicon between pool-side and irradiation positions. © The Authors
- ItemNovel cryogenic engineering solutions for the new Australian Research Reactor OPAL(American Institute of Physics, 2008-03-16) Olsen, SR; Kennedy, SJ; Kim, S; Schulz, JC; Thiering, R; Gilbert, EP; Lu, W; James, M; Robinson, RAIn August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons. The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption). A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2nd half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions. A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2nd GM cryocooler (4K–300K) and a variable electric field can be applied. © 2008, American Institute of Physics
- ItemPlan for Moata Reactor decommissioning, ANSTO(International Group On Research Reactors, 2003-03-24) Kim, S‘Moata’ is an Argonaut type 100 kW reactor that was operated by the Australian Nuclear Science and Technology Organisation for 34 years from 1961 to 1995. It was initially used as a reactor physics research tool and a training reactor but the scope of operations was extended to include activation analysis and neutron radiography from the mid 1970s. In 1995, the Moata reactor was shutdown on the grounds that its continued operation could no longer be economically justified. All the fuel (HEU) was unloaded to temporary storage and secured in 1995, followed by drainage of the demineralised water (primary coolant) from the reactor in 1996 and complete removal of electrical cables in 1998. The Reactor Control Room has been renovated into a modern laboratory. The reactor structure is still intact and kept under safe storage. Various options for decommissioning strategies have been considered and evaluated. So far, ‘Immediate Dismantling’ is considered to be the most desirable option, however, the timescale for actual dismantling needs to take account of the establishment of the national radioactive repository. This paper describes the dismantling options and techniques considered along with examples of other dismantling projects overseas.