Browsing by Author "Ju, P"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPore domain outer helix contributes to both activation and inactivation of the hERG K+ channel(American Society for Biochemistry and Molecular Biology, 2009-01-09) Ju, P; Pages, G; Riek, RP; Chen, PC; Torres, AM; Bansal, PS; Kuyucak, S; Kuchel, PW; Vandenberg, JIIon flow in many voltage-gated K+ channels (VGK), including the (human ether-a-go-go-related gene) hERG channel, is regulated by reversible collapse of the selectivity filter. hERG channels, however, exhibit low sequence homology to other VGKs, particularly in the outer pore helix (S5) domain, and we hypothesize that this contributes to the unique activation and inactivation kinetics in hERG K+ channels that are so important for cardiac electrical activity. The S5 domain in hERG identified by NMR spectroscopy closely corresponded to the segment predicted by bioinformatics analysis of 676 members of the VGK superfamily. Mutations to approximately every third residue, from Phe(551) to Trp(563), affected steady state activation, whereas mutations to approximately every third residue on an adjacent face and spanning the entire S5 segment perturbed inactivation, suggesting that the whole span of S5 experiences a rearrangement associated with inactivation. We refined a homology model of the hERG pore domain using constraints from the mutagenesis data with residues affecting inactivation pointing in toward S6. In this model the three residues with maximum impact on activation (W563A, F559A, and F551A) face out toward the voltage sensor. In addition, the residues that when mutated to alanine, or from alanine to valine, that did not express (Ala(561), His(562), Ala(565), Trp(568), and Ile(571)), all point toward the pore helix and contribute to close hydrophobic packing in this region of the channel. © 2009, American Society for Biochemistry and Molecular Biology
- ItemStructure of the pore-helix of the hERG K+ channel(Springer, 2009-12) Pages, G; Torres, AM; Ju, P; Bansal, PS; Alewood, PF; Kuchel, PW; Vandenberg, JIThe hERG K+ channel undergoes rapid inactivation that is mediated by 'collapse' of the selectivity filter, thereby preventing ion conduction. Previous studies have suggested that the pore-helix of hERG may be up to seven residues longer than that predicted by homology with channels with known crystal structures. In the present work, we determined structural features of a peptide from the pore loop region of hERG (residues 600-642) in both sodium dodecyl sulfate (SDS) and dodecyl phosphocholine (DPC) micelles using NMR spectroscopy. A complete structure calculation was done for the peptide in DPC, and the localization of residues inside the micelles were analysed by using a water-soluble paramagnetic reagent with both DPC and SDS micelles. The pore-helix in the hERG peptide was only two-four residues longer at the N-terminus, compared with the pore helices seen in the crystal structures of other K+ channels, rather than the seven residues suggested from previous NMR studies. The helix in the peptide spanned the same residues in both micellar environments despite a difference in the localization inside the respective micelles. To determine if the extension of the length of the helix was affected by the hydrophobic environment in the two types of micelles, we compared NMR and X-ray crystallography results from a homologous peptide from the voltage gated potassium channel, KcsA. © 2009, Springer.