Browsing by Author "Jiang, CD"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemA new class of fluorinated 5-pyrrolidinylsulfonyl isatin caspase inhibitors for PET imaging of apoptosis(Royal Society of Chemistry, 2012-11-12) Krause-Heuer, AM; Howell, NR; Matesic, L; Dhand, G; Young, EL; Burgess, L; Jiang, CD; Lengkeek, NA; Fookes, CJR; Pham, TQ; Sobrio, F; Greguric, I; Fraser, BHThirteen compounds in a new class of fluorinated 5-pyrrolidinylsulfonyl isatin derivatives were synthesised that have potent and selective inhibitory activity against effector caspases-3 and -7. With in vivo animal PET imaging studies of cerebral ischemia being planned, N-benzylation with selected para-substituted benzylic halides allowed systematic variation of lipophilicity (logP 1.94–3.31) without decreasing inhibition potency (IC50). From this series the p-methoxybenzyl analogue was selected for initial ‘proof-of-concept’ [18F]-fluoride radiolabelling which proceeded in good yield and purity with no need for a protection/deprotection strategy. © 2013 Royal Society of Chemistry
- ItemRadiosynthesis and ‘click’ conjugation of ethynyl‐4‐[18F]fluorobenzene — an improved [18F]synthon for indirect radiolabeling(John Wiley and Sons, 2015-11-03) Roberts, MP; Pham, TQ; Doan, J; Jiang, CD; Hambley, TW; Greguric, I; Fraser, BHReproducible methods for [18F]radiolabeling of biological vectors are essential for the development of new [18F]radiopharmaceuticals. Molecules such as carbohydrates, peptides and proteins are challenging substrates that often require multi-step indirect radiolabeling methods. With the goal of developing more robust, time saving, and less expensive procedures for indirect [18F]radiolabeling of such molecules, our group has synthesized ethynyl-4-[18F]fluorobenzene ([18F]2, [18F]EYFB) in a single step (14 ± 2% non-decay corrected radiochemical yield (ndc RCY)) from a readily synthesized, shelf stable, inexpensive precursor. The alkyne-functionalized synthon [18F]2 was then conjugated to two azido-functionalized vector molecules via CuAAC reactions. The first ‘proof of principle’ conjugation of [18F]2 to 1-azido-1-deoxy-β-d-glucopyranoside (3) gave the desired radiolabeled product [18F]4 in excellent radiochemical yield (76 ± 4% ndc RCY (11% overall)). As a second example, the conjugation of [18F]2 to matrix-metalloproteinase inhibitor (5), which has potential in tumor imaging, gave the radiolabeled product [18F]6 in very good radiochemical yield (56 ± 12% ndc RCY (8% overall)). Total preparation time for [18F]4 and [18F]6 including [18F]F− drying, two-step reaction (nucleophilic substitution and CuAAC conjugation), two HPLC purifications, and two solid phase extractions did not exceed 70 min. The radiochemical purity of synthon [18F]2 and the conjugated products, [18F]4 and [18F]6, were all greater than 98%. The specific activities of [18F]2 and [18F]6 were low, 5.97 and 0.17 MBq nmol−1, respectively. © 2015 John Wiley & Sons, Ltd.
- ItemRadiosynthesis of a novel PET fluoronicotinamide for melanoma tumour PET imaging [18F]MEL050(CSIRO Publishing, 2011-01-01) Greguric, I; Taylor, S; Pham, TQ; Wyatt, NA; Jiang, CD; Bourdier, T; Loc'h, C; Roselt, P; Neels, OC; Katsifis, A[18F]6-Fluoro-N-[2-(diethylamino)ethyl]nicotinamide [18F]MEL050 is a novel nicotinamide-based radiotracer, designed to target random metastatic dissemination of melanoma tumours by targeting melanin. Preclinical studies suggest that [18F]MEL050 has an excellent potential to improve diagnosis and staging of melanoma. Here we report the radiochemical optimization conditions of [18F]MEL050 and its large scale automated synthesis using a GE FXFN automated radiosynthesis module for clinical, phase-1 investigation. [18F]MEL050 was prepared via a one-step synthesis using no-carrier added K[18F]F-Krytpofix® 222 (DMSO, 170°C, 5 min) followed by HPLC purification. Using 6-chloro-N-[2-(diethylamino)ethyl]nicotinamide as precursor, [18F]MEL050 was obtained in 40–46% radiochemical yield (non-decay corrected), in greater than 99.9% radiochemical purity and specific activity ranging from 240 to 325 GBq μmol–1. Total synthesis time including formulation was 40 min and [18F]MEL050 was stable (99.8%) in PBS for 6 h. © 2011, CSIRO Publishing
- ItemSynthesis and in vivo evaluation of [123I]melanin-targeted agents(American Chemical Society, 2015-08-15) Roberts, MP; Nguyen, VH; Ashford, ME; Berghofer, PJ; Wyatt, NA; Krause-Heuer, AM; Pham, TQ; Taylor, SR; Hogan, L; Jiang, CD; Fraser, BH; Lengkeek, NA; Matesic, L; Grégoire, MC; Denoyer, D; Hicks, RJ; Katsifis, A; Greguric, IThis study reports the synthesis, [123I]radiolabeling, and biological profile of a new series of iodinated compounds for potential translation to the corresponding [131I]radiolabeled compounds for radionuclide therapy of melanoma. Radiolabeling was achieved via standard electrophilic iododestannylation in 60–90% radiochemical yield. Preliminary SPECT imaging demonstrated high and distinct tumor uptake of all compounds, as well as high tumor-to-background ratios compared to the literature compound [123I]4 (ICF01012). The most favorable compounds ([123I]20, [123I]23, [123I]41, and [123I]53) were selected for further biological investigation. Biodistribution studies indicated that all four compounds bound to melanin containing tissue with low in vivo deiodination; [123I]20 and [123I]53 in particular displayed high and prolonged tumor uptake (13% ID/g at 48 h). [123I]53 had the most favorable overall profile of the cumulative uptake over time of radiosensitive organs. Metabolite analysis of the four radiotracers found [123I]41 and [123I]53 to be the most favorable, displaying high and prolonged amounts of intact tracer in melanin containing tissues, suggesting melanin specific binding. Results herein suggest that compound [123I]53 displays favorable in vivo pharmacokinetics and stability and hence is an ideal candidate to proceed with further preclinical [131I] therapeutic evaluation. ©2015, American Chemical Society