Browsing by Author "Hu, S"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemComplex magnetic structure in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2016-02-02) Ulrich, C; Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheng, J; Danilkin, SA; Hu, S; Siedel, J; Valanoor, NMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters coexist far beyond room temperature, making it the ideal candidate for technological applications. In particular, multiferroic thin films are the most promising pathway for spintronics applications. Therefore we have investigated BiFeO3 thin films by neutron diffraction. At present, the underlying physics of the magnetoelectric coupling is not fully understood and competing theories exist with partly conflicting predictions. For example, the existence of spin cycloid is a mandatory requirement to establish a direct magnetoelectric coupling. Thus far internal strain in epitaxially grown films has limited the stability of the spin cycloid for BiFeO3 films with less than 300 nm thickness, causing the spin cycloid to collapses to a collinear G-type antiferromagnetic structure. Our neutron diffraction experiments have demonstrated that we were able to realize a spin cycloid in films of just 100 nm thickness through improved electrostatic and epitaxial constraints. This underlines the importance of the correct mechanical and electrical boundary conditions required to achieve emergent spin properties in mutiferroic thin film systems. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.
- ItemDirect evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2017-01-31) Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheung, J; Dainlkin, SA; Lee, WT; Hu, S; Seidel, J; Valanoor, N; Ulrich, CMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. In particular, magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. To realize magnonic devices, a robust long-range spin cycloid with well known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions during growth [1]. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [112] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk single crystals. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.
- ItemEarly Neolithic diets at Baijia, Wei River valley, China: Stable carbon and nitrogen isotope analysis of human and faunal remains(Past Global Changes, 2013-02-13) Atahan, P; Dodson, JR; Li, XQ; Zhou, XY; Hu, S; Chen, L; Bertuch, F; Grice, KThe first farmers of the Wei River valley belonged to the Laoguantai period (ca. 8500-7000 yr BP) and lived in small settlements that were sparsely distributed in the landscape. Understanding of Laoguantai farming practices is limited as only a small number of archaeological sites are known. Here we present stable carbon and nitrogen isotope values for faunal and human bone collagen from Baijia, a Laoguantai site in the Wei River valley of Shaanxi Province, China. Five of the collagen samples have been AMS 14C dated and have a calibrated age range of ca. 7659-7339 yr BP. Stable isotope results show millet and aquatic foods, such as fish and shellfish, being included in the human diet. Bovid samples, which are tentatively identified as water buffalo, have stable carbon isotope values reflecting some millet consumption. The question of whether these bovids were grazing on millet growing wild, or had diets directly influenced by humans, remains to be answered. Stable isotope results for a single pig reveal a markedly different diet, one dominated by C3 plants which would have dominated natural vegetation of the region. Overall, stable isotope results conform to the current view of Laoguantai people being millet farmers with subsistence strategies that included hunted wild foods.
- ItemGrowth and properties of strain-tuned SrCoOx (25≤ x<3) thin films(Australian Institute of Physics, 2016-02-05) Hu, S; Seidel, J; Klose, FControlling material properties by strain is one of the main concepts of thin film growth technology. By altering the order parameter in ferroic materials with which the lattice is coupled, new properties can be achieved, e.g. in perovskite SrCoOx which was identified as a parent phase of strong spin-phonon coupling materials. Here, we present results on a strain-induced antiferromagnetic-ferromagnetic phase transition in high quality epitaxial SrCoOx (2.5≤x<3) (oxygen deficient SrCoO3) thin films grown on (001) SrTiO3, (110) DyScO3 and (001) LaAlO3 substrates by pulsed laser deposition. Electronic and magnetic properties of the samples were characterized by XAS, XPS, neutron scattering and magnetometry measurements. Our results demonstrate that the ferromagnetism observed in SrCoOx/SrTiO3 can be suppressed and changed to antiferromagnetism in SrCoOx/DyScO3 through tensile strain. Further measurements on SrCoOx/LaAlO3 are currently on-going.
- ItemPolarised neutron diffraction study of the spin cycloid in strained nanoscale bismuth ferrite thin films(Australian Institute of Physics, 2017-01-31) Lee, WT; Bertinshaw, J; Maran, R; Callori, SJ; Ramesh, V; Cheung, J; Danilkin, SA; Hu, S; Seidel, J; Valanoor, N; Ulrich, CPolarised neutron scattering is capable of separating magnetic structure from chemical structure. Here we report an experiment using the newly available capability at ANSTO, namely polarised neutron diffraction using polarised 3He neutron spin-filters to obtain the detail magnetic structure in even highly complex magnetic materials. Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as BiFeO3, with a spin cycloidal structure would be ideal candidates for this purpose. In order to realise magnonic devices, a robust long-range spin cycloid with well-known direction is desired. Despite extensive investigation, the stabilization of a large scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. The polarized neutron diffraction experiment did confirm the existence of the spin cycloid in this BiFeO3 film, which is an important prerequisite for the multiferroic coupling.
- ItemStability and scaling behavior of the spin cycloid in BiFeO3 thin films(Australian Institute of Physics, 2018-01-30) Burns, SR; Sando, D; Bertinshaw, J; Russell, L; Xu, X; Maran, R; Callori, SJ; Ramash, V; Cheung, J; Danilkin, SA; Deng, G; Lee, WT; Hu, S; Bellaiche, L; Seidel, J; Valanoor, N; Ulrich, CMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters exist far beyond room temperature, making it the ideal candidate for technological applications. To realize magnonic devices, a robust longrange spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (<300 nm) thin BiFeO3 films has not been accomplished. Using neutron diffraction we were able to demonstrate cycloidal spin order in 100 nm BiFeO3 thin films which became stable through the careful choice of crystallographic orientation and control of the electrostatic and strain boundary conditions during growth [1]. Furthermore, Co-doping, which has demonstrated to further stabilize the spin cycloid, did allow us to obtain spin cycloid order in films of just 50 nm thickness, i.e. films thinner than the cycloidal length of about 64 nm. Interestingly, in thin films the propagation direction of the spin cycloid has changed and shows a peculiar scaling behavior for thinnest films. We were able to support these observations by Monte Carlo theory based on a first-principles effective Hamiltonian method. Our results therefore offer new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.
- ItemStrain-induced magnetic phase transition in SrCoO3 thin films(Australian Institute of Physics, 2015-02-06) Callori, SJ; Hu, S; Bertinshaw, J; Yue, ZJ; Danilkin, SA; Wang, XL; Nagarajan, V; Klose, F; Seidel, J; Ulrich, CTransition metal oxides represent a wide set of materials with a broad range of functionalities, including superconductivity, magnetism, and ferroelectricity, which can be tuned by the careful choice of parameters such as strain, oxygen content, and applied electric or magnetic fields. This tunability makes them ideal candidate materials for use in developing novel information and energy technologies. SrCoO3 provides a particularly interesting system for these investigations. Lee and Rabe have simulated the effect of strain and have predicted that the magnetic state can be tuned through compressive or tensile strain with a ferromagnetic-antiferromagnetic phase transition. Such a phase transition would be accompanied by a metal-to-insulator phase transition and a transition to a ferroelectric polarised state. We have achieved large in-plane tensile strain in SrCoO3 thin films through the proper choice of substrate and our neutron diffraction experiments on only 40 nm thick films have indeed confirmed the transition from a ferromagnetic to an antiferromagnetic ground state, as theoretically predicted. As such, SrCoO3 would constitute a new class of multiferroic material where magnetic and electric polarisations can be driven through external strain.
- ItemStrain-induced magnetic phase transition in SrCoO3−δ thin films(American Physical Society, 2015-04-10) Callori, SJ; Hu, S; Bertinshaw, J; Yue, ZJ; Danilkin, SA; Wang, XL; Nagarajan, V; Klose, F; Seidel, J; Ulrich, CIt has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO3−δ (δ<0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic-to-antiferromagnetic phase transition in SrCoO3−δ films grown on DyScO3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Neél temperatures between TN∼135±10K and ∼325±10K, depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO3−δ thin films under large epitaxial strain. © 2015 American Physical Society.