Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hofmann, F"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Measurements of long-range electronic correlations during femtosecond diffraction experiments performed on nanocrystals of Buckminsterfullerene
    (MyJove, 2017-08-22) Ryan, RA; Williams, S; Martin, AV; Dilanian, RA; Darmanin, C; Putkunz, CT; Wood, D; Streltsov, VA; Jones, MWM; Gaffney, N; Hofmann, F; Williams, GJ; Boutet, S; Messerschmidt, M; Seibert, M M; Curwood, EK; Balaur, E; Peele, AG; Nugent, KA; Quiney, HM; Abbey, B
    The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data. © 2017 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported. .
  • Loading...
    Thumbnail Image
    Item
    Polycrystalline materials analysis using the Maia pixelated energy-dispersive x-ray area detector
    (Cambridge University Press, 2017-09-26) Kirkwood, HJ; De Jonge, MD; Howard, DL; Ryan, CG; van Riessen, GA; Hofmann, F; Rowles, MR; Paradowska, AM; Abbey, B
    Elemental, chemical, and structural analysis of polycrystalline materials at the micron scale is frequently carried out using microfocused synchrotron X-ray beams, sometimes on multiple instruments. The Maia pixelated energy-dispersive X-ray area detector enables the simultaneous collection of X-ray fluorescence (XRF) and diffraction because of the relatively large solid angle and number of pixels when compared with other systems. The large solid angle also permits extraction of surface topography because of changes in self-absorption. This work demonstrates the capability of the Maia detector for simultaneous measurement of XRF and diffraction for mapping the short- and long-range order across the grain structure in a Ni polycrystalline foil. Copyright © International Centre for Diffraction Data 2017
  • No Thumbnail Available
    Item
    Simultaneous X-ray diffraction, crystallography and fluorescence mapping using the Maia detector
    (Elsevier, 2018-02-01) Kirkwood, HJ; de Jonge, MD; Muránsky, O; Hofmann, F; Howard, DL; Ryan, CG; van Riessen, GA; Rowles, MR; Paradowska, AM; Abbey, B
    Interactions between neighboring grains influence the macroscale behavior of polycrystalline materials, particularly their deformation behavior, damage initiation and propagation mechanisms. However, mapping all of the critical material properties normally requires that several independent measurements are performed. Here we report the first grain mapping of a polycrystalline foil using a pixelated energy-dispersive X-ray area detector, simultaneously measuring X-ray fluorescence and diffraction with the Maia detector in order to determine grain orientation and estimate lattice strain. These results demonstrate the potential of the next generation of X-ray area detectors for materials characterization. By scanning the incident X-ray energy we investigate these detectors as a complete solution for simultaneously mapping the crystallographic and chemical properties of the sample. The extension of these techniques to broadband X-ray sources is also discussed. © 2017 Acta Materialia Inc. Published by Elsevier Ltd.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback