Browsing by Author "Hack, J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBi1−xNbxO1.5+x (x=0.0625, 0.12) fast ion conductors: structures, stability and oxide ion migration pathways(Elsevier, 2015-05) Tate, ML; Hack, J; Kuang, X; McIntyre, GJ; Withers, RL; Johnson, MR; Evans, IRA combined experimental and computational study of Bi1−xNbxO1.5+x (x=0.0625 and 0.12) has been carried out using laboratory X-ray, neutron and electron diffraction, impedance measurements and ab-initio molecular dynamics. We demonstrate that Bi0.9375Nb0.0625O1.5625, previously reported to adopt a cubic fluorite-type superstructure, can form two different polymorphs depending on the synthetic method: a metastable cubic phase is produced by quenching; while slower cooling yields a stable material with a tetragonal √2×√2×1 superstructure, which undergoes a reversible phase transition into the cubic form at ~680 °C on subsequent reheating. Neutron diffraction reveals that the tetragonal superstructure arises mainly from ordering in the oxygen sublattice, with Bi and Nb remaining disordered, although structured diffuse scattering observed in the electron diffraction patterns suggests a degree of short-range ordering. Both materials are oxide ion conductors. On thermal cycling, Bi0.88Nb0.12O1.62 exhibits a decrease in conductivity of approximately an order of magnitude due to partial transformation into the tetragonal phase, but still exhibits conductivity comparable to yttria-stabilised zirconia (YSZ). Ab-initio molecular dynamics simulations performed on Bi0.9375Nb0.0625O1.5625 show that oxide ion diffusion occurs by O2− jumps between edge- and corner-sharing OM4 groups (M=Bi, Nb) via tetrahedral □M4 and octahedral □M6 vacancies. © 2015 Elsevier Inc.
- ItemStructural properties of the Nb-doped bismuth oxide materials, Bi1-xNbxO1.5+x(Australian Institute of Physics, 2015-02-03) Tate, ML; Hack, J; Kuang, XJ; McIntyre, GJ; Withers, RL; Johnson, MR; Evans, IRBismuth oxide (Bi2O3) exists in five polymorphs, and possesses excellent oxide ion conductivity when in the cubic fluorite structure type, due to its intrinsic oxide ion vacancies. However, this cubic structure is only stable over a small high-temperature range. Introducing niobium into the bismuth oxide structure stabilises the highly conductive cubic and tetragonal phases to room temperature, allowing for high oxide ion conductivity at lower temperatures. In addition to stabilising the high temperature structure types, doping with niobium also introduces interstitial oxygen atoms into the material in order to maintain a charge balance. Niobium-doped bismuth oxide samples, Bi1-xNbxO1.5+x (x = 0.0625, 0.12), were synthesised by a solid state synthetic method, before undergoing AC impedance spectroscopy experiments to study their electrical properties. Both samples showed excellent oxide ion conductivities, with the cubic sample (x = 0.12) possessing higher conductivity values than the tetragonal sample (x = 0.0625). The tetragonal sample does not exhibit a loss in conductivity on thermal cycling, unlike the cubic sample, where the conductivity decreases due to a phase transformation from the cubic to the tetragonal phase. Variable temperature X-ray powder diffraction elucidated the structural transformations which the tetragonal bismuth niobate undergoes; from being tetragonal at room temperature, to cubic above 680 °C, then returning to the tetragonal phase upon cooling. To locate the interstitial oxygen atom positions in the tetragonal phase, powder neutron diffraction has been undertaken.