Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gadomkar, Z"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast
    (Society of Photo-Optical Instrumentation Engineers (SPIE), 2021-07-12) Wan, S; Arhatari, BD; Nesterets, YI; Mayo, SC; Thompson, D; Fox, J; Kumar, B; Prodanovic, Z; Häusermann, D; Maksimenko, A; Hall, CJ; Dimmock, MR; Pavlov, KM; Lockie, D; Rickard, M; Gadomkar, Z; Alaleh, A; Vafa, E; Peele, AG; Quiney, HM; Lewis, SJ; Gureyev, TE; Brennan, PC; Taba, ST
    Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging. Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality. Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve   (  AUCVGC  )   of 0.754 (p  =  0.009). This was followed by 32 keV (AUCVGC  =  0.731, p  ≤  0.001), 34 keV (AUCVGC  =  0.723, p  ≤  0.001), and 28 keV (AUCVGC  =  0.654, p  =  0.015). Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).
  • No Thumbnail Available
    Item
    Propagation-based phase-contrast CT of the breast demonstrates higher quality than conventional absorption-based CT even at lower radiation dose
    (Elsevier B. V., 2021-01) Taba, ST; Arhatari, BD; Nesterets, YI; Gadomkar, Z; Mayo, SC; Thompson, D; Fox, J; Kumar, B; Prodanovic, Z; Häusermann, D; Maksimenko, A; Hall, CJ; Dimmock, MR; Pavlov, KM; Lockie, D; Gity, M; Peele, AG; Quiney, HM; Lewis, SJ; Gureyev, TE; Brennan, PC
    Rationale and Objectives Propagation-based phase-contrast CT (PB-CT) is an advanced X-ray imaging technology that exploits both refraction and absorption of the transmitted X-ray beam. This study was aimed at optimizing the experimental conditions of PB-CT for breast cancer imaging and examined its performance relative to conventional absorption-based CT (AB-CT) in terms of image quality and radiation dose. Materials and Methods Surgically excised breast mastectomy specimens (n = 12) were scanned using both PB-CT and AB-CT techniques under varying imaging conditions. To evaluate the radiological image quality, visual grading characteristics (VGC) analysis was used in which 11 breast specialist radiologists compared the overall image quality of PB-CT images with respect to the corresponding AB-CT images. The area under the VGC curve was calculated to measure the differences between PB-CT and AB-CT images. Results The highest radiological quality was obtained for PB-CT images using a 32 keV energy X-ray beam and by applying the Homogeneous Transport of Intensity Equation phase retrieval with the value of its parameter γ set to one-half of the theoretically optimal value for the given materials. Using these optimized conditions, the image quality of PB-CT images obtained at 4 mGy and 2 mGy mean glandular dose was significantly higher than AB-CT images at 4 mGy (AUCVGC = 0.901, p = 0.001 and AUCVGC = 0.819, p = 0.011, respectively). Conclusion PB-CT achieves a higher radiological image quality compared to AB-CT even at a considerably lower mean glandular dose. Successful translation of the PB-CT technique for breast cancer imaging can potentially result in improved breast cancer diagnosis. Crown Copyright © 2020 Published by Elsevier Inc. on behalf of The Association of University Radiologists.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback