Browsing by Author "Gadd, JB"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMetal forms and dynamics in urban stormwater runoff: new insights from diffusive gradients in thin-films (DGT) measurements(Elsevier, 2022-02-01) McDonald, S; Holland, A; Simpson, SL; Gadd, JB; Bennett, WW; Walker, GW; Keough, MJ; Cresswell, T; Hassell, KLStormwater runoff typically contains significant quantities of metal contaminants that enter urban waterways over short durations and represent a potential risk to water quality. The origin of metals within the catchment and processes that occur over the storm can control the partitioning of metals between a range of different forms. Understanding the fraction of metals present in a form that is potentially bioavailable to aquatic organisms is useful for environmental risk assessment. To help provide this information, the forms and dynamics of metal contaminants in an urban system were assessed across a storm. Temporal patterns in the concentration of metals in dissolved and particulate (total suspended solids; TSS) forms were assessed from water samples, and diffusive gradients in thin-films (DGTs) were deployed to measure the DGT-labile time-integrated metal concentration. Results indicate that the concentrations of dissolved and TSS-associated metals increased during the storm, with the metals Al, Cd, Co, Cu, Pb and Zn representing the greatest concern relative to water quality guideline values (GVs). The portion of labile metal as measured by DGT devices indicated that during the storm a substantial fraction (∼98%) of metals were complexed and pose a lower risk of acute toxicity to aquatic organisms. Comparison of DGT results to GVs indicate that current GVs are likely quite conservative when assessing stormwater pollution risks with regards to metal contaminants. This study provides valuable insight into the forms and dynamics of metals in an urban system receiving stormwater inputs and assists with the development of improved approaches for the assessment of short-term, intermittent discharge events. © 2021 Elsevier Ltd.
- ItemTowards sustainable environmental quality: priority research questions for the Australasian region of Oceania(John Wiley & Sons, Inc, 2019-07-05) Gaw, S; Harford, A; Pettigrove, VJ; Sevicke-Jones, G; Manning, T; Ataria, J; Cresswell, T; Dafforn, KA; Leusch, FDL; Moggridge, B; Cameron, M; Chapman, J; Coates, G; Colville, A; Death, C; Hageman, K; Hassell, KL; Hoak, M; Gadd, JB; Jolley, DF; Karami, A; Kotzakoulakis, K; Lim, R; McRae, N; Metzeling, L; Mooney, T; Myers, J; Pearson, A; Saaristo, M; Sharley, D; Stuthe, J; Sutherland, O; Thomas, O; Tremblay, L; Wood, W; Boxall, ABA; Rudd, MA; Brooks, BWEnvironmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g., the food–energy–water nexus, demographic transitions to cities) and climate change. Here we report priority research questions from the Global Horizon Scanning Project, which aimed to identify, prioritize, and advance environmental quality research needs from an Australasian perspective, within a global context. We employed a transparent and inclusive process of soliciting key questions from Australasian members of the Society of Environmental Toxicology and Chemistry. Following submission of 78 questions, 20 priority research questions were identified during an expert workshop in Nelson, New Zealand. These research questions covered a range of issues of global relevance, including research needed to more closely integrate ecotoxicology and ecology for the protection of ecosystems, increase flexibility for prioritizing chemical substances currently in commerce, understand the impacts of complex mixtures and multiple stressors, and define environmental quality and ecosystem integrity of temporary waters. Some questions have specific relevance to Australasia, particularly the uncertainties associated with using toxicity data from exotic species to protect unique indigenous species. Several related priority questions deal with the theme of how widely international ecotoxicological data and databases can be applied to regional ecosystems. Other timely questions, which focus on improving predictive chemistry and toxicology tools and techniques, will be important to answer several of the priority questions identified here. Another important question raised was how to protect local cultural and social values and maintain indigenous engagement during problem formulation and identification of ecosystem protection goals. Addressing these questions will be challenging, but doing so promises to advance environmental sustainability in Oceania and globally. © 2019 The Authors