Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Franich, RD"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Efficiency enhancements to Monte Carlo simulation of heavy ion elastic recoil detection analysis spectra
    (Elsevier, 2002-05) Franich, RD; Johnston, PN; Bubb, IF; Dytlewski, N; Cohen, DD
    Monte Carlo (MC) simulation can be used to simulate heavy ion elastic recoil detection analysis spectra, including the broadening and tailing effects of multiple and plural scattering, although it is very costly in terms of computer time. In this work, kinematic relationships and experimental parameters are exploited to implement efficiency improvements in the MC modeling process. For thin films, incident ions that pass through the sample without undergoing a significant scattering event need not be tracked. Ions that might generate a detectable scattered or recoiled ion are predicted by generating, in advance, the impact parameters which will define its path. Light recoiled target atoms may be dealt with in the same way. For heavy atoms, however, the probability of large angle scattering events is so high that the paths of most recoil atoms are dominated by several scattering events with large angular deflections. © 2002 Published by Elsevier Science B.V.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback