Browsing by Author "Feng, YX"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemCoupled U-series and radiocarbon dating of a Chinese stalagmite from 15 to 33 ka: testing calibration applicability and dead carbon correction variability(Elsevier, 2006-08) Hodge, E; Zhao, JX; Feng, YX; Wu, J; Fink, D; Hua, QA high purity stalagmite from South China with minimal detrital component (based on 230Th/232Th ratios >4000) and an average growth rate of ∼50 mm/ka has been carefully sampled along its growth axis for both U-series and radiocarbon measurements in a study to investigate its applicability for improving the database of radiocarbon calibration for the pre-dendro period (∼12.4 ka). Our preliminary assessment is based on a set of 15 high-precision AMS 14C-and 6 TIMS U-series samples spaced over the 37 cm length of the stalagmite to confirm an age range of 15 to 33 ka. TIMS U-series dates over this age range can be obtained to 0.5% at 2σ errors and as speleothems are composed of dense crystalline calcite, they are often less vulnerable to post-depositional alteration than corals. However an issue of serious concern in such an analysis is to evaluate whether the variability of the dead carbon fraction (DCF) over this time range reduces the reliability and quality of a speleothem-based calibration of atmospheric radiocarbon. The DCF represents the fraction of carbon derived from host limestone surrounding the cave that contains negligible 14C and therefore offsets the 14C date towards older ages. An assumption of a constant DCF, estimated by others to be ∼16% for speleothems (based on matching to a well-constrained radiocarbon calibration curve from 11 to 15 ka) requires case-by-case verification. Calendar ages for the positions taken for AMS 14C samples were interpolated from adjacent U-series dates on the growth curve. These absolute ages were compared to the measured AMS 14C ages and then overlain on the IntCal04 calibration curve. In broad terms, our preliminary results indicate that the growth rate, although continuous, was not linear over the period from 15 to 33 ka. In order to minimise the difference between our 14C-ages and the IntCal04 curve from 26 ka to 15.6 ka, we required an average DCF of 18%. However, this value causes the younger half (<22 ka) to be ‘too old’ and the upper section (>22 ka) to be too ‘young’ indicating that DCF over the LGM period was probably not constant. To further qualify the status of this stalagmite and decouple growth rate variability from that of the DC, a new set of 30 paired 230Th–AMS 14C-ages are in progress. Copyright © 2006 Elsevier Ltd.
- ItemEvidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios(Elsevier, 2010-03-15) Griffiths, ML; Drysdale, RN; Gagan, MK; Frisia, S; Zhao, JX; Ayliffe, LK; Hantoro, WS; Hellstrom, JC; Fischer, MJ; Feng, YX; Suwargadi, BWTrace element and stable isotope ratios from an active stalagmite (LR06-B1) recovered from Liang Luar Cave on the island of Flores (eastern Indonesia) are used to reconstruct the position of the austral summer inter-tropical convergence zone and Australian-Indonesian summer monsoon variability during the Holocene. Uranium-series dating of the stalagmite shows that it commenced growth 12,640 years ago , with hiatuses spanning 8,560 to 6,420 and 3,670 to 2,780 years ago. Stalagmite Mg/Ca and Sr/Ca ratios correlate significantly with one another, and with δ18O and δ13C, throughout the record. This suggests that the Mg/Ca and Sr/Ca ratios are dominated by prior calcite precipitation, a process whereby degassing in the vadose zone during periods of low recharge causes deposition of calcite and disproportionate loss of Ca2+ ions (relative to Mg2+ and Sr2+) ‘upstream’ of the stalagmite. The degree of initial 234U/238U disequilibrium also appears to have been controlled by recharge to the overlying aquifer. Together with the Mg/Ca, Sr/Ca, and δ18O values, the initial uranium isotope activity ratios ([234U/238U]I) imply a generally drier early Holocene, coincident with a lower sea level and lower Southern Hemisphere summer insolation. Comparison of speleothem δ18O time-series from Flores and Borneo shows that they vary in unison for much of the Holocene. However, there is a significant decrease in the Borneo δ18O record ~6,000 to 4,000 years ago that does not occur in the Flores record. This anomaly may be related to a change in the Australian-Indonesian summer monsoon circulation in response to a protracted positive phase of the Indian Ocean Dipole. Under this scenario, stronger upwelling off of western Indonesia would, based on present-day effects, result in reduced summer convective activity over Flores and a subsequent northward shift of the intertropical convergence zone. © 2010, Elsevier Ltd.
- ItemIncreasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise.(Nature Publishing Group, 2009-09) Griffiths, ML; Drysdale, RN; Gagan, MK; Zhao, JX; Ayliffe, LK; Hellstrom, JC; Hantoro, WS; Frisia, S; Feng, YX; Cartwright, I; Pierre, ES; Fischer, MJ; Suwargadi, BWThe Australian-Indonesian summer monsoon affects rainfall variability and hence terrestrial productivity in the densely populated tropical Indo-Pacific region. It has been proposed that the main control of summer monsoon precipitation on millennial timescales is local insolation(1-3), but unravelling the mechanisms that have influenced monsoon variability and teleconnections has proven difficult, owing to the lack of high-resolution records of past monsoon behaviour. Here we present a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia. We show that the summer monsoon precipitation increased during the Younger Dryas cooling event, when Atlantic meridional overturning circulation was relatively weak(4). Monsoon precipitation intensified even more rapidly from 11,000 to 7,000 years ago, when the Indonesian continental shelf was flooded by global sea-level rise(5-7). We suggest that the intensification during the Younger Dryas cooling was caused by enhanced winter monsoon outflow from Asia and a related southward migration of the intertropical convergence zone(8). However, the early Holocene intensification of monsoon precipitation was driven by sea-level rise, which increased the supply of moisture to the Indonesian archipelago. © 2009, Nature Publishing Group.
- ItemIntegration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group(Wiley, 2006-10) Turney, CSM; Haberle, SG; Fink, D; Kershaw, AP; Barbetti, M; Barrows, TT; Black, M; Cohen, TJ; Corrège, T; Hesse, PP; Hua, Q; Johnston, R; Morgan, VI; Moss, PT; Nanson, GC; van Ommen, TD; Rule, S; Williams, NJ; Zhao, JX; D'Costa, D; Feng, YX; Gagan, MK; Mooney, SD; Xia, QThe degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric ‘teleconnection’ and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. © 2006 John Wiley & Sons, Ltd.
- ItemPost-glacial coupling of the Australasian monsoon and teleconnections to the North Atlantic: new insights from Indonesian speleothems(GNS Science, 2009-05-15) Griffiths, ML; Drysdale, RN; Gagan, MK; Zhao, JK; Ayliffe, LK; Hellstrom, JC; Hantoro, WS; Frisia, S; Feng, YX; Cartwright, I; St Pierre, E; Fisher, M; Suwargadi, BThe Australasian monsoon system orchestrates rainfall variability and terrestrial productivity in the densely populated region of the tropical Indo-Pacific. A clear understanding of the dominant mechanisms governing its variability has been difficult to resolve, partly because we currently lack high-resolution proxy records of past monsoon behaviour, particularly for the southern tropics. Here we provide a radiometrically dated reconstruction of Australian-Indonesian summer monsoon (AISM) rainfall based on oxygen isotopes and trace element data in stalagmites from southern Indonesia. The multi-proxy records are tied to age-depth models constructed from 62 TIMS and MC-ICP-MS U-series ages, covering the period 0 to 12.6 ka B.P. The record shows that the AISM was anti-phased with the East Asian summer monsoon (EASM) on orbital to millennial-centennial timescales over the past 12.6 ka. At the orbital-scale, local summer insolation was an important driver of opposing changes in AISM and EASM rainfall. However, a slight mismatch between the AISM and insolation from 9 to 11 ka B.P. is concurrent with the sharp rise in eustatic sealevel, which apparently increased the supply of northwesterly summer monsoon moisture to the Indonesian maritime continents. At millennial-centennial timescales, the oxygen isotope and trace element records show that periods of weakened North Atlantic meridional overturning circulation and cooling, including the Younger Dryas cold stage, are in phase with sharp increases in AISM rainfall. The connection between the AISM and a cooler North Atlantic is probably due to enhanced outflow from the Asian winter monsoon and associated southward migration of the intertropical convergence zone. These interhemispheric connections were dominant until ~6.5 ka, when the El Niño-Southern Oscillation became the governing influence on AISM variability.