Browsing by Author "Donner, SD"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEquatorial Pacific coral geochemical records show recent weakening of the Walker Circulation(American Geophysical Union, 2014-11-10) Carilli, JE; McGregor, HV; Gaudry, JJ; Donner, SD; Gagan, MK; Stevenson, S; Wong, HKY; Fink, DEquatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959–2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2–7 year variability correlated with the El Niño–Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation. © 2014, American Geophysical Union. All Rights Reserved.
- ItemHistorical temperature variability affects coral response to heat stress(Public Libray of Science, 2012-03-30) Carilli, JE; Donner, SD; Hartmann, ACCoral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. © 2012 Carilli et al.
- ItemReply to comment by Karnauskas et al. on “Equatorial Pacific coral geochemical records show recent weakening of the Walker circulation”(American Geophysical Union, 2015-05-18) Carilli, JE; McGregor, HV; Gaudry, JJ; Donner, SD; Gagan, MK; Stevenson, S; Wong, HKY; Fink, DIn our paper describing a new coral record from Butaritari, we hypothesized that comparing the temporal trends in our records to coral records from farther east in the equatorial Pacific may support the evidence for a weakening of a Walker circulation, documented elsewhere in the literature [Power and Smith, 2007; Tokinaga et al., 2012]. Weakening of the Walker circulation is expected under global warming due to an imbalance in the rate of change in different aspects of the hydrological cycle [Vecchi and Soden, 2007]. We thank Karnauskas et al. [2015] for recognizing the value of our Butaritari coral climate reconstruction, and we appreciate their critique of our study. The Karnauskas et al. [2015] analyses strengthen our argument regarding the utility of interisland coral-proxy derived sea surface temperature (SST) gradients as a Walker circulation metric, but we disagree with their interpretation of decadal variability in our records. Here we provide additional analyses, which confirm that our reconstruction [Carilli et al., 2014] shows a long-term weakening of the Walker circulation over 1972–1998. We also document that significant decadal variations in Walker circulation strength, and for particular choices of start and end years over which trends are calculated, are able to show slight Walker strengthening. Overall, we conclude that Walker circulation variations are more nuanced than either our original publication [Carilli et al., 2014] or the subsequent Karnauskas et al. [2015] comment would suggest. Karnauskas et al. [2015] also provide a detailed analysis of Equatorial Undercurrent (EUC) activity near the Gilbert Islands and argue that the EUC does not strongly affect Butaritari. Our original publication did not claim to find significant EUC/Butaritari linkages, and we appreciate the diligence of Karnauskas et al. [2015] for ruling this out as a possibility. © 2015, American Geophysical Union.