Browsing by Author "Darmann, F"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAdvancing the reflectometry cause at ANSTO - updates and upgrades to the time-of-flight Platypus Neutron Reflectometer.(International Conference on Neutron Scattering, 2017-07-12) Nelson, A; Holt, SA; Darmann, F; Klose, FSince the first suite of neutron scattering instruments was commissioned in 2008 the Australian Nuclear Science and Technology Organisation (ANSTO) has invested in instrumentation for the analysis of thin interfacial films. The horizontal time-of-flight reflectometer, Platypus [1], has now been joined by an X-ray reflectometer and a variable angle spectroscopic imaging ellipsometer. The high quality science possible on these complementary instruments has lead to a large oversubscription rate on Platypus. Here, we outline the key developments and upgrades we have made to Platypus that have led to this success. These include the development of event mode acquisition for studying kinetic processes, new sample environments (confinement cell, vapour delivery systems), as well as projects to upgrade its performance by installing new collimation systems and detectors.
- ItemDevelopment of Direct Laser Melting (DLM) deposition system for in-situ use on neutron beam instruments(Australian Institute of Nuclear Science and Engineering (AINSE), 2020-11-11) Baldwin, C; White, R; Paradowska, AM; Booth, N; Davidson, G; D’Adam, TM; Shumack, A; Darmann, FDirect Laser Melting (DLM) deposition is an additive manufacturing technique in which a high power laser is used to create a melt pool on a workpiece while a jet of metal powder is applied, resulting in localised material deposition. This technique is used in industry for additive repairs, cladding with dissimilar metals, or, in conjunction with a CNC milling machine, as a full-fledged 3D additive fabrication platform. As the prominence of this technology rises, so too does interest in characterising deposition dynamics over a vast parameter space. Neutron beam instruments offer unique capabilities for such characterisation. As part of the NSW Research Attraction and Acceleration Program, ACNS is developing world first sample environment capabilities enabling in-situ laser metal deposition, for use on KOWARI and DINGO beamline. The system will utilise a self-contained motion stage and laser cladding head which will construct a thin wall structure on a user specified substrate, utilising up to two metal powders at a time. Neutron studies of the melt pool or heat affected zone can then be performed during and after printing. This paper will present the technical specifications and capabilities of the system, which will be available to the user community in late 2021. © The authors.
- ItemQuokka: the small-angle neutron scattering instrument at OPAL(The Bragg Institute, Australian Nuclear Science and Technology Organisation, 2005-11-27) Gilbert, EP; Noakes, TJ; Schulz, JC; Baxter, P; Darmann, F; Hauser, N; Abbeywick, P; Brûlé, A; Imamovic, E; Christoforidis, JA small-angle neutron scattering (SANS) instrument is being designed as part of the initial instrument suite for the 20-MW OPAL Reactor. The new instrument, receiving neutrons from a large liquid-D2 cold source, will be in the spirit of the worlds best facilities and will greatly build upon the Australian Nuclear Science and Technology Organisations existing expertise and facilities. Scheduled for completion in July 2006, it will provide Australian and international researchers with opportunities to access state-of-the-art SANS instrumentation. The details of the new SANS will be presented. © The Authors
- ItemRecent upgrades to ANSTO’s thermal neutron spectrometer, TAIPAN(Australian Institute of Physics, 2018-01-30) Rule, KC; Darmann, F; Oste, T; Olsen, SR; Bartlett, D; Franceschini, F; Berry, A; McGregor, A; Ogrin, A; Ersez, T; Kafes, A; Pangelis, S; Danilkin, SA; Stampfl, APJ
- ItemRecent upgrades to ANSTO’s thermal triple axis spectrometer ‘TAIPAN’(Australian Institute of Nuclear Science and Engineering, 2016-11-29) Rule, KC; Olsen, SR; Danilkin, SA; Darmann, F; Oste, T; Bartlett, D; Kafes, T; Mcgregor, A; Stampfl, APJ; Ersez, T; Orgrin, AThe thermal triple axis spectrometer, TAIPAN, has been operational since 2010 and employs a graphite monochromator to access neutron energy transfers up to 80meV. A recent string of projects have greatly increased the capabilities of this instrument. Initially the wall shared with the cold TAS, SIKA, was modified to allow access to larger regions of Q-Energy space for TAIPAN. A more recent upgrade project has involved developing a new sapphire filter translation stage mechanism and a new Cu-200 double-focussing monochromators. The copper monochromator has been installed back to back with the previous highly ordered PG-monochromator and extends the accessible energy range of the neutrons from 70meV to 180meV.