Browsing by Author "Daniel, WJT"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemNumerical investigation of residual stresses in chain-die formed AHSS u-channels(Materials Research Forum LLC, 2016-07-03) Sun, Y; Qian, Z; Luzin, V; Daniel, WJT; Zhang, M; Ding, SAdvanced high-strength steel is increasingly being used in automotive structural components due to its excellent strength-to-weight ratios. However, the variations of residual stresses magnitude in AHSS products are usually very complex and unpredictable due to the fabrication process and the material’s high strength. Consequently, unbalanced residual stresses are responsible for a series of product defects. Chain-die forming is a novel AHSS fabrication method which has the characteristics of preserving the material’s ductility maximally and also reducing the residual stresses in the product. In this study, the finite element method is employed to investigate the equivalent residual stresses (Von Mises) in Chain-die formed AHSS U-channels. Finite element simulation of roll forming of the same type as AHSS U-channel forming is performed to make a comparison of the residual stresses distribution characterizations in AHSS U-channels which are fabricated by roll forming and by Chain-die forming. The results indicate that the residual stresses in Chain-die formed U-channels stay at a very low level and are almost negligible. In the meanwhile, due to the bending, reverse bending and other unpredictable redundant deformation types in the roll forming process, the residual stresses are more significant than those of Chain-die formed AHSS channels. The comparison of the longitudinal strain developments of flange edges of roll formed and Chain-die formed U-channels is given to explain the differences between the residual stress distributions in the roll formed and Chain-die formed U-channels. This paper gives a comprehensive understanding of the characteristics of the residual stress distribution in Chain-die formed AHSS U-channels. It provides a clear evidence to illustrate the superiority of Chain-die forming in reducing the residual stresses in AHSS products. © The Authors