Browsing by Author "Colhoun, EA"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA community-based geological reconstruction of Antarctic ice sheet deglaciation since the last glacial maximum(Elsevier, 2014-09-15) Bentley, MJ; O'Cofaigh, C; Anderson, JB; Conway, H; Davies, B; Graham, AGC; Hillenbrand, CD; Hodgson, DA; Jamieson, SSR; Larter, RD; Mackintosh, AN; Smith, JA; Verleyen, E; Ackert, RP; Bart, PJ; Berg, S; Brunstein, D; Canals, M; Colhoun, EA; Crosta, X; Dickens, WA; Domack, E; Dowdeswell, JA; Dunbar, R; Ehrmann, W; Evans, J; Favier, V; Fink, D; Fogwill, CJ; Glasser, NF; Gohl, K; Golledge, NR; Goodwin, I; Gore, DB; Greenwood, SL; Hall, BL; Hall, K; Hedding, DW; Hein, AS; Hocking, EP; Jakobsson, M; Johnson, JS; Jomelli, V; Jones, RS; Klages, JP; Kristoffersen, Y; Kuhn, G; Leventer, A; Licht, K; Lilly, K; Lindow, J; Livingstone, SJ; Massé, G; McGlone, MS; McKay, RM; Melles, M; Miura, H; Mulvaney, R; Nel, W; Nitsche, FO; O'Brien, PE; Post, AL; Roberts, SJ; Saunders, KM; Selkirk, PM; Simms, AR; Spiegel, C; Stolldorf, TD; Sugden, DE; van der Putten, N; van Ommen, TD; Verfaillie, D; Vyverman, W; Wagner, B; White, DA; Witus, AE; Zwartz, DA robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community. © 2014 The Authors. CC BY license
- ItemLate pliocene age of glacial deposits at Heidemann Valley, East Antarctica: evidence for the last major glaciation in the Vestfold Hills(Cambridge University Press, 2010-02) Colhoun, EA; Kiernan, K; McConnell, A; Quilty, PG; Fink, D; Murray-Wallace, CV; Whitehead, JA Pliocene (2.6–3.5 Ma) age is determined from glacial sediments studied in a 20 m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the ‘Vestfold Glaciation’ may have been due to lateral expansion of the Sørsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea. © 2010, Cambridge University Press
- ItemLate quaternary fire regimes of Australasia(Elsevier, 2011-01) Mooney, SD; Harrison, SP; Bartlein, PJ; Daniau, AL; Stevenson, J; Brownlie, KC; Buckman, S; Cupper, ML; Luly, J; Black, M; Colhoun, EA; D’Costa, D; Dodson, JR; Haberle, SG; Hope, GS; Kershaw, P; Kenyon, C; McKenzie, M; Williams, NWe have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans. © 2011, Elsevier Ltd.