Browsing by Author "Cao, C"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDrug-induced morphology transition of self-assembled glycopolymers: insight into the drug-polymer interaction(Australian Institute of Nuclear Science and Engineering (AINSE), 2018-11-18) Cao, C; Zhao, JC; Chen, F; Lu, MG; Khine, YY; Macmillanc, A; Garvey, CJ; Stenzel. MIt is often assumed that a hydrophobic drug will be entrapped in the hydrophobic environment of a micelle. Little attention is usually drawn to the actual location of the drug and the effect of the drug on properties. In this publication, we show how the chosen drug curcumin is not only unexpectedly located in the shell of the micelle, but that the accumulation in the hydrophilic block can lead to changes in morphology during self-assembly. A block copolymer poly(1-O-methacryloyl -β-D-fructopyranose)-b-poly(methyl methacrylate), Poly(1-O-MAFru)36-b-PMMA192, was loaded with different amounts of curcumin. The resulting self-assembled nanoparticles were analyzed using TEM, SAXS, and SANS. Initial microscopy evidence revealed that the presence of the drug induces morphology changes from cylindrical micelles (no drug) to polymersomes, which decreased in size with increasing amount of drug (Figure 1). SAXS and SANS analysis, supported by fluorescence studies, revealed that the drug is interacting with the glycopolymer block. The drug did not only influence the shape of the drug carrier, but also the level of cof the shell. Increasing the amount of drug dehydrated the nanoparticle shell, which coincided with a lower nanoparticle uptake by MCF-7 breast cancer cells and non-cancerous Raw-264.7 cells. As a result, we showed that the drug can influence the behaviour of the fluorescence in terms of shape and shell hydration, which could influence the performance in a biological setting (Figure 1). Although the depicted scenario may not apply to every drug carrier, it is worth evaluation if the drug will interfere in unexpected ways, for example, when the drug locates on the surface and affects the internal structure of the nanocarrier. © The Authors.
- ItemElectrical properties of hollandite-type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16(American Chemical Society, 2019-03-28) Cao, C; Singh, K; Kan, WH; Avdeev, M; Thangadurai, VElectrical conductivity and electrochemical catalytic activity for H2 oxidation of Ti-based hollandite-type Ba1.33Ga2.67Ti5.33O16 (BGT), K1.33Ga1.33Ti6.67O16 (KGT), and K1.54Mg0.77Ti7.23O16 (KMT) were investigated, along with the chemical stability of KMT under H2 at elevated temperature. BGT, KGT, and KMT crystallized in a tetragonal structure with the space-group I4/m. The electrical conductivity in H2 increases with increasing Ti content, and the highest total electrical conductivity of 2 S/cm at 800 °C in H2 was observed for KMT. KGT:Fe (1:1) + 20% LSGM + 30% porosity composite electrode showed the lowest area specific resistance of ca. 1.6 Ω cm2 at 800 °C for hydrogen oxidation reaction (HOR) under the open circuit condition. Moderate catalytic activity for HOR could be attributed to poor oxide ion conductivity and exclusion of potassium and hydrogen uptake in H2 at elevated temperature. Bond valence sum mismatch map calculation showed that the ionic transport happens along the 1D channel of c-axis in the hollandite oxides. © 2019 American Chemical Society