Browsing by Author "Barrows, TT"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBuilding a future on knowledge from the past: what paleo-science can reveal about climate change and its potential impacts in Australia(Commonwealth Scientific and Industrial Research Organisation, 2005-06) Harle, KJ; Etheridge, DM; Whetton, P; Jones, R; Hennessy, K; Goodwin, ID; Brooke, BP; van Ommen, TD; Barbetti, M; Barrows, TT; Chappell, J; De Deckker, P; Fink, D; Gagan, MK; Haberle, SG; Heijnis, H; Henderson-Sellers, A; Hesse, PP; Hope, GS; Kershaw, P; Nicholls, NIn Australia, high quality instrumental climate records only extend back to the late 19th century and therefore only provide us with a brief snapshot of our climate, its mean state and its short-term variability. Palaeo-records extend our knowledge of climate back beyond the instrumental record, providing us with the means of testing and improving our understanding of the nature and impacts of climate change and variability in Australia. There is a vast body of palaeo-records available for the Australian region (including Antarctica), ranging from continuous records of sub-decadal up to millennial scale (such as those derived from tree rings, speleothems, corals, ice cores, and lake and marine sediments) through to discontinuous records representing key periods in time (such as coastal deposits, palaeo-channels, glacial deposits and dunes). These records provide a large array of evidence of past atmospheric, terrestrial and marine environments and their varying interactions through time. There are a number of key ways in which this evidence can, in turn, be used to constrain uncertainties about climate change and its potential impacts in Australia.
- ItemClimate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation(Elsevier Science Ltd., 2013-08-15) Reeves, JM; Barrows, TT; Cohen, TJ; Kiem, AS; Bostock, HC; Fitzsimmons, KE; Jansen, JD; Kemp, J; Krause, C; Phipps, SJ; Petherick, LMThe Australian region spans some 600 of latitude and 500 of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 +/- 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Nino-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.© 2013, Elsevier Ltd.
- ItemIntegration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group(Wiley, 2006-10) Turney, CSM; Haberle, SG; Fink, D; Kershaw, AP; Barbetti, M; Barrows, TT; Black, M; Cohen, TJ; Corrège, T; Hesse, PP; Hua, Q; Johnston, R; Morgan, VI; Moss, PT; Nanson, GC; van Ommen, TD; Rule, S; Williams, NJ; Zhao, JX; D'Costa, D; Feng, YX; Gagan, MK; Mooney, SD; Xia, QThe degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric ‘teleconnection’ and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. © 2006 John Wiley & Sons, Ltd.
- ItemLate quaternary palaeoenvironmental change in the Australian drylands(Elsevier, 2013-08-15) Fitzsimmons, KE; Cohen, TJ; Hesse, PP; Jansen, JD; Nanson, GC; May, JH; Barrows, TT; Haberlah, D; Hilgers, A; Kelly, T; Larsen, JR; Lomax, J; Treble, PCIn this paper we synthesise existing palaeoenvironmental data from the arid and semi-arid interior of the Australian continent for the period 40–0 ka. Moisture is the predominant variable controlling environmental change in the arid zone. Landscapes in this region respond more noticeably to changes in precipitation than to temperature. Depending on their location, arid zone records broadly respond to tropical monsoon-influenced climate regimes, the temperate latitude westerly systems, or a combination of both. The timing and extent of relatively arid and humid phases vary across the continent, in particular between the westerly wind-controlled temperate latitudes, and the interior and north which are influenced by tropically sourced precipitation. Relatively humid phases in the Murray-Darling Basin on the semi-arid margins, which were characterised by large rivers most likely fed by snow melt, prevailed from 40 ka to the Last Glacial Maximum (LGM), and from the deglacial to the mid Holocene. By contrast, the Lake Eyre basin in central Australia remained relatively dry throughout the last 40 ka, with lake high stands at Lake Frome around 35–30 ka, and parts of the deglacial period and the mid-Holocene. The LGM was characterised by widespread relative aridity and colder conditions, as evidenced by extensive desert dune activity and dust transport, lake level fall, and reduced but episodic fluvial activity. The climate of the deglacial period was spatially divergent. The southern part of the continent experienced a brief humid phase around ∼17–15 ka, followed by increased dune activity around ∼14–10 ka. This contrasts with the post-LGM persistence of arid conditions in the north, associated with a lapsed monsoon and reflected in lake level lows and reduced fluvial activity, followed by intensification of the monsoon and increasingly effective precipitation from ∼14 ka. Palaeoenvironmental change during the Holocene was also spatially variable. The early to mid-Holocene was, however, generally characterised by moderately humid conditions, demonstrated by lake level rise, source-bordering dune activity, and speleothem growth, persisting at different times across the continent. Increasingly arid conditions developed into the late Holocene, particularly in the central arid zone. © 2012 Elsevier Ltd.