Browsing by Author "Artaxo, P"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAtmospheric iron deposition: global distribution, variability, and human perturbations(Annual Reviews, 2009-01) Mahowald, NM; Engelstaedter, S; Luo, CW; Sealy, A; Artaxo, P; Benitez-Nelson, C; Bonnet, S; Chen, YS; Chuang, PY; Cohen, DD; Dulac, F; Herut, B; Johansen, AM; Kubilay, N; Losno, R; Maenhaut, W; Paytan, A; Prospero, JM; Shank, LM; Siefert, RLAtmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron ire less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting it-on and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding. © 2009, Annual Reviews
- ItemCOARSEMAP: synthesis of observations and models for coarse-mode aerosols(American Geophysical Union, 2017-12-11) Wiedinmyer, C; Lihavainen, H; Mahowald, NM; Alastuey, A; Albani, S; Artaxo, P; Bergametti, G; Batterman, S; Brahney, J; Duce, RA; Feng, Y; Buck, C; Ginoux, PA; Chen, Y; Guieu, C; Cohen, DD; Hand, JL; Harrison, RM; Herut, B; Ito, A; Losno, R; Gomez, D; Kanakidou, M; Landing, WM; Laurent, B; Mihalopoulos, N; Mackey, K; Maenhaut, W; Heuglin, C; Milando, C; Miller, RL; Myriokefaitakis, S; Neff, JC; Pandolfi, M; Paytan, A; Pérez, CGP; Prank, M; Prospero, JM; Tamburo, E; Varrica, D; Wong, MY; Zhang, YCoarse mode aerosols influence Earth’s climate and biogeochemistry by interacting with long-wave radiation, promoting ice nucleation, and contributing important elements to biogeochemical cycles during deposition. Yet coarse mode aerosols have received less emphasis in the scientific literature. Here we present first efforts to globally synthesize available mass concentration, composition and optical depth data and modeling for the coarse mode aerosols (<10 µm) in a new project called “COARSEMAP” (http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/COARSEMAP/). We seek more collaborators who have observational data, especially including elemental or composition data, and/or who are interested in detailed modeling of the coarse mode. The goal will be publications synthesizing data with models, as well as providing synthesized results to the wider community.