Nanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplatelets

dc.contributor.authorSaura-Múzquiz, Men_AU
dc.contributor.authorGranados-Miralles, Cen_AU
dc.contributor.authorAndersen, HLen_AU
dc.contributor.authorStingaciu, Men_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorChristensen, Men_AU
dc.date.accessioned2021-03-15T03:03:37Zen_AU
dc.date.available2021-03-15T03:03:37Zen_AU
dc.date.issued2018-11-15en_AU
dc.date.statistics2021-03-09en_AU
dc.description.abstractMagnetic materials are ubiquitous in electric devices and motors making them indispensable for modern-day society. The hexaferrites currently constitute the most widely used permanent magnets (PMs), accounting for 85% (by weight) of the global sales of PMs. This work presents a complete bottom-up nanostructuring protocol for preparation of magnetically aligned, high-performance hexaferrite PMs with a record-high (BH)max for dry-processed ferrites. The procedure includes the supercritical hydrothermal flow synthesis of anisotropic magnetic-single-domain strontium hexaferrite (SrFe12O19) nanocrystallites of various sizes, and their subsequent compaction into bulk magnets by spark plasma sintering (SPS). Interestingly, Rietveld modeling of neutron powder diffraction data reveals a significant difference between the magnetic structure of the thinnest nanoplatelets and the bulk compound, indicating the Sr-containing atomic layer to be the termination layer. Subsequently, high-density SrFe12O19 magnets (>95% of the theoretical density) are produced by SPS of the flow-synthesized nanoplatelets. Texture analysis by X-ray pole figure measurements demonstrates how the anisotropic shape of the nanoplatelets causes a self-induced alignment during SPS, without application of an external magnetic field. The self-induced texture is accompanied by crystallite growth along the magnetic easy-axis, i.e., the thickness of the platelets, resulting in high-performance PMs with square hysteresis curves and (BH)max of 30 kJ/m3. The (BH)max is further enhanced by annealing, reaching 36 kJ/m3 after 4 h at 850 °C, which exceeds the (BH)max of the highest grade of dry-processed commercial ferrites worldwide. © 2018 American Chemical Societyen_AU
dc.identifier.citationSaura-Múzquiz, M., Granados-Miralles, C., Andersen, H. L., Stingaciu, M., Avdeev, M., & Christensen, M. (2018). Nanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplatelets. ACS Applied Nano Materials, 1(12), 6938–6949. doi:10.1021/acsanm.8b01748en_AU
dc.identifier.issn2574-0970en_AU
dc.identifier.issue12en_AU
dc.identifier.journaltitleACS Applied Nano Materialsen_AU
dc.identifier.pagination6938-6949en_AU
dc.identifier.urihttps://doi.org/10.1021/acsanm.8b01748en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10538en_AU
dc.identifier.volume1en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectNanoparticlesen_AU
dc.subjectNanostructuresen_AU
dc.subjectTextureen_AU
dc.subjectPermanent magnetsen_AU
dc.subjectPlasmaen_AU
dc.subjectSinteringen_AU
dc.subjectStrontiumen_AU
dc.subjectFerriteen_AU
dc.subjectMagnetic materialsen_AU
dc.titleNanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplateletsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections