Solutions of the relativistic two-body problem. II. Quantum mechanics
dc.contributor.author | Cook, JL | en_AU |
dc.date.accessioned | 2020-09-03T00:02:02Z | en_AU |
dc.date.available | 2020-09-03T00:02:02Z | en_AU |
dc.date.issued | 1972-04 | en_AU |
dc.date.statistics | 2020-01-01 | en_AU |
dc.description.abstract | This paper discusses the formulation of a quantum mechanical equivalent of the relative time classical theory proposed in Part I. The relativistic wavefunction is derived and a covariant addition theorem is put forward which allows a covariant scattering theory to be established. The free particle eigenfunctions that are given are found not to be plane waves. A covariant partial wave analysis is also given. A means is described of converting wavefunctions that yield probability densities in 4-space to ones that yield the 3-space equivalents. Bound states are considered and covariant analogues of the Coulomb potential, harmonic oscillator potential, inverse cube law of force, square well potential, and two-body fermion interactions are discussed. © CSIRO 1972 | en_AU |
dc.identifier.citation | Cook, J. L. (1972). Solutions of the relativistic two-body problem. II. Quantum mechanics. Australian Journal of Physics, 25(2), 141–146. doi:10.1071/PH720141 | en_AU |
dc.identifier.govdoc | 9921 | en_AU |
dc.identifier.issn | 1446-5582 | en_AU |
dc.identifier.issue | 2 | en_AU |
dc.identifier.journaltitle | Australian Journal of Physics | en_AU |
dc.identifier.pagination | 141-146 | en_AU |
dc.identifier.uri | https://doi.org/10.1071/PH720141 | en_AU |
dc.identifier.uri | http://apo.ansto.gov.au/dspace/handle/10238/9766 | en_AU |
dc.identifier.volume | 25 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | CSIRO | en_AU |
dc.subject | Quantum mechanics | en_AU |
dc.subject | Relativity theory | en_AU |
dc.subject | Scattering | en_AU |
dc.subject | Angular momentum | en_AU |
dc.subject | Bosons | en_AU |
dc.subject | Harmonic potential | en_AU |
dc.title | Solutions of the relativistic two-body problem. II. Quantum mechanics | en_AU |
dc.type | Journal Article | en_AU |