Spin-wave propagation in α-Fe2O3 nanorods: the effect of confinement and disorder

dc.contributor.authorCortie, DLen_AU
dc.contributor.authorCasillas-Garcia, Gen_AU
dc.contributor.authorSquires, Aen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorLiu, Yen_AU
dc.contributor.authorChen, YHen_AU
dc.contributor.authorYu, DHen_AU
dc.date.accessioned2024-03-01T03:19:24Zen_AU
dc.date.available2024-03-01T03:19:24Zen_AU
dc.date.issued2019-03-07en_AU
dc.date.statistics2024-03-01en_AU
dc.description.abstractSpin-wave excitations in α-Fe 2 O 3 nanorods were directly detected using time-of-flight inelastic neutron spectroscopy. The dispersive magnon features are compared with those in bulk α-Fe 2 O 3 particles at various temperatures to highlight differences in mode intensity and width. The interchanged spectral intensities in the nanorod are a consequence of a suppressed spin orientation, and this is also evident in the neutron diffraction which demonstates that the weak ferromagnetic phase survives to 1.5 K. Transmission electron microscopy shows that the ellipsoidal particles are single-crystalline with a typical length of 300 ± 100 nm and diameter of 60 ± 10 nm. The main magnon features are similar in bulk and nanoforms and can be explained using a model Hamiltonian based on Samuelson and Shirane's classical theory with exchange constants of J 1 = -1.03 meV, J 2 = -0.28 meV, J 3 = 5.12 meV and J 4 = 4.00 meV. Numerical simulations show that two distinct mechanisms may contribute to the magnon line broadening in the nanorods: a distribution of exchange interactions caused by disorder, and a shortened quasiparticle lifetime caused by the scattering of spin waves at surfaces. © 2019 IOP Publishing Ltden_AU
dc.description.sponsorshipD L C thanks Professor Roger Lewis and Prof Garry McIntyre for valuable discussions. This research was partially supported by the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (project number CE170100039) and funded by the Australian Government. The authors are grateful for access to neutron beam-time (P5345) granted by the Australian Nuclear Science and Technology Organisation. X L Wang acknowledge the support of an ARC Future Fellowship.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationCortie, D., Casillas-Garcia, G., Squires, A., Mole, R., Wang, X., Liu, Y., Chen, Y.-H., & Yu, D. (2019). Spin-wave propagation in α-Fe2O3 nanorods: the effect of confinement and disorder. Journal of Physics: Condensed Matter, 31(18), 184003. doi:10.1088/1361-648X/ab04caen_AU
dc.identifier.issn0953-8984en_AU
dc.identifier.issn1361-648Xen_AU
dc.identifier.issue18en_AU
dc.identifier.journaltitleJournal of Physics Condensed Matteren_AU
dc.identifier.urihttps://doi.org/10.1088/1361-648x/ab04caen_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15520en_AU
dc.identifier.volume31en_AU
dc.languageengen_AU
dc.language.isoenen_AU
dc.publisherIOP Publishingen_AU
dc.relation.uri184003en_AU
dc.subjectSpin wavesen_AU
dc.subjectIronen_AU
dc.subjectParticlesen_AU
dc.subjectElectron microscopyen_AU
dc.subjectFerromagnetismen_AU
dc.subjectHematiteen_AU
dc.subjectNeutron diffractionen_AU
dc.titleSpin-wave propagation in α-Fe2O3 nanorods: the effect of confinement and disorderen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections